Problem set 2 – Liquids

Problem 7

The classical configuration integral is given by

$$Z_N = \int \dots \int e^{-\beta U(\tau_1, \dots, \tau_N)} d\tau_1 \dots d\tau_N,$$

where $U(\tau_1,...,\tau_N)$ is the total potential energy and $\beta = 1/(k_BT)$.

- a) Explain what is meant by pair-wise additivity and give the corresponding expression for U in terms of the pair potential between particles i and j, $\phi(r_{ij}) = \phi_{ij}$.
- b) Use your above expression for U in terms of ϕ_{ij} within the pair-wise additivity approximation together with the definition of the Mayer f-function, $f_{ij} \equiv e^{-\beta\phi_{ij}} 1$, to show that Z_N can be written as

$$Z_N = \int \dots \int \prod_{i>j}^N (1 + f_{ij}) d\tau_1 \dots d\tau_N.$$

c) Explain the significance of the Mayer f-function in performing the integrals in Z_N . Include in your answer a sketch of a realistic/reasonable pair potential ϕ_{ij} and the corresponding Mayer f-function f_{ij} .

Problem 8

For a monatomic system the second virial coefficient is given explicitly by

$$B_2(T) = -2\pi \int_0^\infty \left(e^{-\beta \phi(r)} - 1 \right) r^2 dr$$

where $\phi(r)$ is the intermolecular pair potential and $\beta = 1/(k_B T)$.

a) Sketch the square well potential defined as follows:

$$\phi(r) = \begin{cases} \infty & r < \sigma \\ -\epsilon & \sigma \le r \le \lambda \sigma \\ 0 & r > \lambda \sigma \end{cases}$$

- b) Find an expression for the second virial coefficient for this potential.
- c) The properties of Ar gas can be described using the square well potential with $\sigma = 3.067 \text{Å}$, $\lambda = 1.70$ and $\epsilon/k_B = 93.3K$. Calculate the predicted value of the Boyle temperature.

Problem 9

The pair potential between molecules forming an imperfect gas can be described by the following interaction potential

$$\phi(r) = \begin{cases} \infty & r < \sigma \\ -\frac{A}{r^6} & r \ge \sigma \end{cases}$$

where $A = 1.11 \times 10^{-78} \text{ J m}^6$ is an interaction parameter and $\sigma = 0.356 \text{ nm}$ is the hard sphere diameter.

- a) Sketch the interaction potential $\phi(r)$ and calculate the depth of the potential energy at contact (i.e. at $r = \sigma$).
- b) Using that $\phi \ll k_B T$ for $r \geq \sigma$, show that the second virial coefficient $B_2(T)$ for this potential may be written as

$$B_2(T) = 2\pi \int_0^\sigma r^2 dr + 2\pi \int_\sigma^\infty \frac{\phi(r)}{k_B T} r^2 dr$$

c) The imperfect gas under consideration obeys the Van der Waals equation of state, which can also be written in terms of a virial expansion

$$p = \frac{Nk_BT}{V - Nb} - a\left(\frac{N}{V}\right)^2 \approx k_BT \left[\rho + \left(b - \frac{a}{k_BT}\right)\rho^2 + \dots\right]$$

Combine the answer to (b) and the above virial expansion to show that the van der Waals parameters are given by

$$a = -2\pi \int_{\sigma}^{\infty} \phi(r) r^2 dr \qquad b = 2\pi \int_{0}^{\sigma} r^2 dr$$

d) Hence, calculate a and b and explain their physical significance.

Problem 10 - Extra

Consider a Lennard-Jones gas for which the pair potential is

$$\phi(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

with ϵ the depth of the potential well and σ the particle diameter.

a) By transforming the integration variable from r to dimensionless distance $y = r/\sigma$ and defining the dimensionless temperature $T^* = k_B T/\epsilon$, show that

$$B_2(T)/\sigma^3 = -2\pi \int_0^\infty \left[\exp\left(-\frac{4}{T^*} \left[y^{-12} - y^{-6}\right]\right) - 1 \right] y^2 dy$$

Hence, the dimensionless second virial coefficient for a Lennard-Jones gas $B_2^*(T^*) = B_2(T)/\sigma^3$ is a function solely of the dimensionless temperature T^* .

b) Now assume hat the higher order virial coefficients for a Lennard-Jones gas $B_n^*(T^*) = B_n(T)/\sigma^{3(n-1)}$ are likewise functions solely of T^* , and define the dimensionless number density ρ^* and the dimensionless pressure p^* by:

$$\rho^* = \rho \sigma^3 \qquad \qquad p^* = \frac{p\sigma^3}{\epsilon}$$

Show from the virial expansion $p = k_B T \left(\rho + B_2 \rho^2 + B_3 \rho^3 + ... \right)$ that the equation of state of a Lennard-Jones gas is a universal function of (p^*, ρ^*, T^*) . In other words, different Lennard-Jones systems with different parameters σ and ϵ all have the same equation of state expressed in the dimensionless quantities (p^*, ρ^*, T^*) . This is an(other) example of the 'law of corresponding states'.

Problem 11

In this problem we will obtain the expression for the radial distribution function g(r) in terms of the configuration integral Z_N (derived in lecture 4) in a slighly different way.

(a) Consider a one-component fluid. The probability that any particle is in $d\tau_1$ at $\mathbf{r_1}$ and any second particle in $d\tau_2$ at $\mathbf{r_2}$, irrespective of the positions of the other N-2 particles, can also be expressed in terms of the pair correlation function $g^{(2)}(\mathbf{r_1}, \mathbf{r_2})$:

$$\rho^2 g^{(2)}(\mathbf{r_1}, \mathbf{r_2}) d\tau_1 d\tau_2.$$
 $(\rho = N/V)$ Eq. 1

What would the above probability be if all the particles were *independent* of each other? In other words, what would the value of $g^{(2)}$ be in this case and explain that the factor $g^{(2)}$ thus corrects for the "non-independence", i.e. the *correlations* between the particles.

Note that for isotropic and homogeneous systems such as liquids and gases, $g^{(2)}(\mathbf{r_1}, \mathbf{r_2})$ only depends on the relative distance between particles 1 and 2: $g^{(2)}(|\mathbf{r_1} - \mathbf{r_2}|) = g(r)$, which is of course the radial distribution function.

b) As we have seen in lecture 4, the probability that particle 1 is in $d\tau_1$ at $\mathbf{r_1}$ and particle 2 is in $d\tau_2$ at $\mathbf{r_2}$, irrespective of the positions of the other N-2 particles, is:

$$\frac{\int d\tau_3 \cdots \int d\tau_N e^{-\beta U(\dots)} d\tau_1 d\tau_2}{Z_N}.$$
 Eq. 2

Explain that the probability that any particle is in $d\tau_1$ and any second particle in $d\tau_2$, irrespective of the positions of the other N-2 particles, is the above probability multiplied by $\frac{N!}{(N-2)!}$.

c) Show that

$$\frac{N!}{\rho^2(N-2)!} = V^2 \left[1 - \left(\frac{1}{N}\right) \right].$$
 Eq. 3

d) Combine Eqs. 1 and 3 from parts a) and c) with your answer to part b) to obtain the expression for the radial distribution function g(r) in terms of the configuration integral Z_N (which was also derived in lecture 4):

$$g(r) = \frac{V^2}{Z_N} \int d\tau_3 \cdots \int d\tau_N e^{-\beta U(\dots)}.$$

Problem 12

The compressibility equation is given by

$$1 + 4\pi\rho \int_0^\infty h(r)r^2 dr = \rho k_B T \kappa_T,$$
 Eq. 1

where $\rho = \frac{N}{V}$ is the number density, $h(r) \equiv g(r) - 1$ the total correlation function and $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$ the isothermal compressibility.

(a) Show that the isothermal compressibility can be rewritten as

$$\kappa_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T.$$

The second virial coefficient is given by

$$B_2(T) = -2\pi \int_0^\infty \left(e^{-\beta \phi(r)} - 1 \right) r^2 dr,$$
 Eq. 2

where $\phi(r)$ is the interaction pair potential as a function of the separation r and $\beta = 1/(k_B T)$.

(b) In the limit of small ρ we can assume that the radial distribution function $g(r) = \exp(-\phi(r)\beta)$. Use this to show that in the low density limit the compressibility equation can be written in terms of B_2 as

$$1 - 2\rho B_2 = k_B T \left(\frac{\partial \rho}{\partial p}\right)_T.$$

(c) Show that for small ρ this can be approximated as

$$\left(\frac{\partial p}{\partial \rho}\right)_T = k_B T \left(1 + 2\rho B_2 + \dots\right).$$

and, hence, obtain an expression for the pressure. Comment on your answer.