
Problem set 1 – Soft Matter

Problem 1

Due to gravity colloidal particles in suspension form of a sedimentation equilibrium, which is characterised
by a height-dependent number density n(z). The (osmotic) pressure at a height h (w.r.t the bottom of
the container) at low concentrations (i.e. assuming no interactions) is given by !(h) = n(h)kBT .

a) Explain what is meant by the buoyant mass of a colloidal particle of mass density ωc in a solvent
of mass density ωs? Write down the expression for the gravitational force acting an a particle in
terms of the particle volume V and the mass density di”erence #ω = ωc → ωs.

b) The upward force, due to the osmotic pressure gradient, acting on a particle in a sedimentation
equilibrium is given by

Fup = → 1

n(h)

d!

dh
.

Verify by dimensional analysis that this expression indeed has the units of a force.

c) Balance the forces from parts a) and b) and solve the resulting di”erential equation to obtain the
so-called barometric height distribution for the particle density n as a function of height h:

n(h) = n(0) exp

(
→#ωV gh

kBT

)
.

d) Calculate the decay length – which is often referred to as the gravitational length – of the exponential
function (i.e. the height at which n(h)/n(0) = e→1) for polystyrene particles of diameter

– 0.1 µm

– 1 µm

– 10 µm

in water at 300 K. Note that the density of polystyrene = 1.05 g cm→3.

Comment on the values you obtain, especially in relation to the extent of the Earth’s atmosphere
(what would be the gravitational length of an oxygen molecule?).

Problem 2

When octane is placed in a quartz vessel, the octane wets the walls of the vessel as schematically shown
in the figure below.

The energy, U , per unit area of a film of octane of
thickness, D, due to van der Waals interactions can
be described by

U(D) =
→A

12εD2
,

where the Hamaker constant A = →7 · 10→21 J.
The gravitational potential energy per unit area of
the film at a height, h, above the liquid surface is
given by U = ωghD, with ω the density of the liquid
(= 703 kg m→3 for octane) and g = 9.81 m s→2.

a) Sketch the form of each of these two potentials (for A < 0), and of their sum, as a function of D.
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b) Evaluate the equilibrium thickness of the film at h = 1 cm.

The Hamaker constant for water interacting with itself across a vacuum is Aww = 3.7 · 10→20 J while for
a typical hydrocarbon oil, Aoo = 5.1 · 10→20 J.

c) Estimate the Hamaker constant, Awo, for water interacting with oil across a vacuum.

d) Determine the sign of the Hamaker constant for a film of oil on water in air. Note that the combining
relation for medium 1 interacting with medium 2 across medium 3: A132 ↑ A12 +A33 →A13 →A23.

e) Hence predict whether oil will spread on water.

Problem 3

The Debye length depends on the salt concentration via the bulk number density n0 as given by

ϑ→1 =

√
ϖϖ0kBT

2e2n0z2
,

where ϖ is relative permittivity, ϖ0 the permittivity in vacuum (ϖ0 = 8.85 · 10→12 C2/N m2), z the valency
of the ions and e the elementary charge.

a) Calculate the Debye length in 1.00 mM KNO3 (for water at T = 298 K and ϖ = 78).

b) Explain whether the Debye length will be smaller or larger in a solution of (i) 1.75 mM KNO3 and
(ii) 1.00 mM K2SO4?

The exact solution of the Poisson-Boltzmann equation for a charged surface is given by the Gouy-
Chapman equation for the dimensionless electrostatic potential:

$(x) = 2 ln

[
1 + tanh($0/4)e→ωx

1→ tanh($0/4)e→ωx

]
.

c) Show that for small dimensionless surface potentials, i.e. $0 ↓ 1, the solution to the linearised
Poisson-Boltzmann equation is recovered ($(x) = $0e→ωx).

Hint: Use that for x ↓ 1 tanhx ↑ x and ln(1 + x) ↑ x (also in that order actually!)

d) Explain what is meant by the electric double layer and what the significance of the Debye length
ϑ→1 is in this respect?

The relation between the thickness of the double layer and ϑ→1 can also be demonstrated using the
condition for electro-neutrality. The surface charge density (of the charged surface), ϱ, must be exactly
matched by the integrated charge density in the solution, ω(x):

ϱ = →
∫ ↑

0
ω(x)dx.

e) Given that for small surface potentials, ω(x) ↑ →2zen0$(x), show that

ϱ = ϖϖ0ϑς0.

Note that this result is identical to that for a dielectric-filled capacitor with charge ϱ, potential
ς0 and a plate–plate separation of ϑ→1; hence the analogy between the thickness of the electrical
double layer and the separation between the oppositely charged plates of the capacitor.

f) Calculate ς0 for a typical surface charge density of colloids in water, ϱ = 1 e/nm2, and a salt
concentration of 0.1 M NaCl. Is the linear Poisson-Boltzmann equation, valid for ς0 < 26 mV,
typically applicable for colloidal particles?
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Problem 4

a) The Van der Waals interaction between two spheres of radius R and separated by a distance D is
given by U = →AR/12D, where A is the Hamaker constant.

– Calculate U between two R = 0.5 µm silica spheres (A11 = 6 · 10→20 J) separated by 100 nm
in vacuum.

– Repeat the calculation for silica in water, where A131 = 0.8 · 10→20 J.

– Compare both values to the thermal energy of the particles at room temperature.

In the lectures, the Van der Waals interaction (per unit area) between two half spaces was calculated.
Here, we will follow the same strategy to calculate the Van der Waals interaction (per unit area) between
two plates of finite thickness T at a separation D, as shown in the diagram below.

b) Starting from the interaction between two atoms being U = →C/r6, first show that the interaction
between 1 atom and a plate of thickness T and number density ω, separated by a distance D, is

U(D) = →εCω

6

(
1

D3
→ 1

(D + T )3

)
.

Hint: use that xdx = 1
2dx

2.

Note that for T ↔ ↗ the ‘atom – half space’ interaction is recovered (→εCω/6D3) .

c) Next, calculate the interaction between two plates by integrating over the second plate of thickness
T and number density ω and express your answer in terms of the Hamaker constant A = ε2Cω2.
Hence, show that the Van der Waals interaction (per unit area) between two plates of thickness T
at a separation D is

U(D) = → A

12ε

(
1

D2
→ 2

(D + T )2
+

1

(D + 2T )2

)
,

Note again that for T ↔ ↗ the ‘half space – half space’ interaction is recovered (→A/12εD2).
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