Problem set 2 — Soft Matter

Problem 5

Two sapphire surfaces in a 1 mM NaCl solution (k~! ~ 10 nm, € = 78) are separated by D = 20 nm. The
Hamalker constant for sapphire-water-sapphire is A13; = 6.7-1072° J and surface charge o = 1.5 mC m~2.

a) Given that calculate the attractive pressure, I = —dU/dD, due to the attractive van der Waals
interaction, U = —A /12w D?.

b) Calculate the repulsive pressure between the sapphire surfaces, II(D) = %‘je"‘D , and compare the

value you obtain to your answer in part a): is the repulsive pressure enough to prevent the sapphire
surfaces from sticking to each other or not? (¢p = 8.85-10712 C? N~1m~2)

The interaction energy between spherical silica particles in a stable colloidal suspension at pH 7 in an
aqueous NaCl solution is shown in the diagram below.

¢) Explain the factors that determine the shape of the curve.

d) Explain why each of the following actions may — _
lead to aggregation of the silica particles:
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- increasing the NaCl concentration.

Interaction energy
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- adding a divalent electrolyte.

- adding methanol to the solution.

- reducing the pH (note: the isoelectric point
of silica is around pH = 2).

Problem 6

The one-dimensional (1D) motion of a colloidal particle with mass m and radius a in a fluid medium is
described by the Langevin equation,

du(t)
dt

where v is the instantaneous velocity, £ the friction coefficient, F' the external force on the particle and
f(t) the fluctuating force.

=F—&u(t) + f(1),

a) Carefully explain the origin of Brownian motion and why (f(t)) = 0.

Consider the steady-state diffusion of spherical particles down a concentration gradient, dc¢/dx. The
force on a single particle is given by F' = —du/dz, in which the chemical potential has the form p =
ue +kpTlne/c™, where p& and ¢ are constants.

b) Find an expression for F' and hence show that

(v = 2L
- fe dx’

c) Write an expression for the flux J (units mol m=2 s~!) in terms of (v), and by comparing it with
Fick’s First Law, J = —D dc/dx, show that the diffusion coefficient D is given by (Stokes-Einstein)
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Consider a suspension of N colloidal particles of radius R = 1 um in water (n = 0.89 - 1073 Pa s) in a
volume V at T = 298 K. The volume fraction ¢ is defined as ¢ = pv,, where p = N/V (number density)
and v, the particle volume. The Stokes friction factor for a sphere of radius R in a solvent of viscosity 7
is £ = 6mR.

d) The mean squared displacement is given by (r2(t)) = 6Dt (see also problem 8). Calculate the time
it takes for a single colloidal particle (i.e. in the limit of ¢ — 0) to diffuse a distance equal to its
own diameter (in 3D). How does this so-called ‘Brownian time’ vary with R?

e) Show that the typical time 7 for a particle to travel the mean distance between the particles is
proportional to ¢—2/3 and calculate 7 for a suspension with ¢ = 0.3.

Problem 7

In this problem, we will look at the entropy-driven transition from the isotropic to the nematic phase
in suspension of hard colloidal rods, as first described by Lars Onsager (in the 1940s): “The isotropic-
nematic transition in a suspension of rods is driven by the loss of orientation entropy and the gain of free
volume entropy.”

a) Explain the differences between the isotropic and nematic phase in terms of ordering of the centres
and orientations of the rods in both phases.

b) Now, we consider the orientational entropy of the isotropic and nematic phases. Using the Boltz-
mann equation for the entropy, S = kg In (2, show that the change in orientational entropy for the
isotropic-to-nematic transition can be estimated as

Qn 1
ASyr = kBaniI ~ kp lnﬂ ~ —kp.

Next, we consider the change in entropy due to the change in the excluded volume going from the isotropic
to the nematic phase. To this end, we need the Gibbs-Duhem relation (from thermodynamics):

Ndyp = —-SdT,
and the following expression for the chemical potential

Vi
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where o is a constant, V' the volume and V; the volume available to insert an extra particle. Note that
Vi =V —Verer, where Vg is the excluded volume, i.e. the volume where no extra particle can be inserted
(due to the presence of another rod), and at low concentrations V' >> V...

c¢) Show that at low concentrations the ‘excluded volume entropy’ (per particle) is given by

Semcl _ kB In E ~ _k'B Vexcl

N 14 V
Hint: In(1 —z) = —z.

d) Make a sketch to explain that the excluded volumes between two rods (length L and diameter D)
in the isotropic and nematic phases are (approximately) given by

. I 2 : N 2
Isotropic phase: V,, ~ LD Nematic phase: V,, ~ D”L.

e) Show that the change in S...; for the isotropic-to-nematic transition, ASe, = SN Selxcl, is

excl —

ASepet = kppL?D, where p= N/V is the number density.



f) Finally, the isotropic-nematic transition occurs at the number density (p*) where the loss of orien-
tational entropy is balanced by the gain of excluded volume entropy:

ASor + ASeavcl =0.

Show that p* = 1/(L?D), which is equivalent to a volume fraction of ¢* = p*v, = D/L, where v,
is the volume of a rod, D?L. This explain that for rods with L/D = 10 (which is not even that
long) this entropy-driven transition already happens at very low concentrations!

Problem 8

Here, we follow Langevin’s original paper (see the translation by D.S. Lemons and A. Gythiel, Am. J.
Phys. 65, 1079 (1997)) to derive an expression for mean squared displacement of a Brownian particle of
mass m. The Langevin equation in 1D is given by:

d*x

dz
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where F' is an external (driving) force, £ is the Stokes friction factor and f(¢) is a fluctuating random
force with (f(¢t)) = 0.

a) Multiply both sides of the Langevin equation by x and then use the hint below to show that

m d?z? dz\? & da?

Hint: Note that djﬁz = % (%) =2 {x% + (%)2} as is easily shown using dz? = 2zdx.

b) Next, by (i) assuming that there is no external force, (ii) taking the ensemble average and (iii) then

applying the equipartition theorem m((dl)2> = kpT, show that one obtains

dt
miERN et
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c¢) By taking z = (dz?/dt), integrate the above equation to obtain

2
z = kT + Aexp (—Et> ,
13 m

where A is a constant that does not depend on ¢.

Hint: take the indefinite integral, i.e. no integration boundaries, just add an integration constant.

d) For long times, i.e. t > m/&, show this equation can be solved to obtain the mean squared
displacement in one dimension:

 2kpT
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