Problem set 2 – Soft Matter

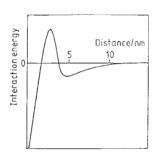
Problem 5

Two sapphire surfaces in a 1 mM NaCl solution ($\kappa^{-1} \approx 10$ nm, $\epsilon = 78$) are separated by D = 20 nm. The Hamaker constant for sapphire-water-sapphire is $A_{131} = 6.7 \cdot 10^{-20}$ J and surface charge $\sigma = 1.5$ mC m⁻².

- a) Given that calculate the attractive pressure, $\Pi = -dU/dD$, due to the attractive van der Waals interaction, $U = -A/12\pi D^2$.
- b) Calculate the repulsive pressure between the sapphire surfaces, $\Pi(D) = \frac{2\sigma^2}{\epsilon\epsilon_0}e^{-\kappa D}$, and compare the value you obtain to your answer in part a): is the repulsive pressure enough to prevent the sapphire surfaces from sticking to each other or not? ($\epsilon_0 = 8.85 \cdot 10^{-12} \text{ C}^2 \text{ N}^{-1}\text{m}^{-2}$)

The interaction energy between spherical silica particles in a stable colloidal suspension at pH 7 in an aqueous NaCl solution is shown in the diagram below.

- c) Explain the factors that determine the shape of the curve.
- d) Explain why each of the following actions may lead to aggregation of the silica particles:
 - increasing the NaCl concentration.
 - adding a divalent electrolyte.
 - adding methanol to the solution.
 - reducing the pH (note: the isoelectric point of silica is around pH = 2).



Problem 6

The one-dimensional (1D) motion of a colloidal particle with mass m and radius a in a fluid medium is described by the Langevin equation,

$$m\frac{dv(t)}{dt} = F - \xi v(t) + f(t),$$

where v is the instantaneous velocity, ξ the friction coefficient, F the external force on the particle and f(t) the fluctuating force.

a) Carefully explain the origin of Brownian motion and why $\langle f(t) \rangle = 0$.

Consider the steady-state diffusion of spherical particles down a concentration gradient, dc/dx. The force on a single particle is given by $F = -d\mu/dx$, in which the chemical potential has the form $\mu = \mu^{\oplus} + k_B T \ln c/c^{\oplus}$, where μ^{\oplus} and c^{\oplus} are constants.

b) Find an expression for F and hence show that

$$\langle v \rangle = -\frac{k_B T}{\xi c} \frac{dc}{dx}.$$

c) Write an expression for the flux J (units mol m⁻² s⁻¹) in terms of $\langle v \rangle$, and by comparing it with Fick's First Law, $J = -D \, dc/dx$, show that the diffusion coefficient D is given by (Stokes-Einstein)

7

$$D = \frac{k_B T}{\xi}.$$

Consider a suspension of N colloidal particles of radius $R=1~\mu\mathrm{m}$ in water ($\eta=0.89\cdot 10^{-3}~\mathrm{Pa~s}$) in a volume V at $T=298~\mathrm{K}$. The volume fraction ϕ is defined as $\phi=\rho v_p$, where $\rho=N/V$ (number density) and v_p the particle volume. The Stokes friction factor for a sphere of radius R in a solvent of viscosity η is $\xi=6\pi\eta R$.

- d) The mean squared displacement is given by $\langle r^2(t) \rangle = 6Dt$ (see also problem 8). Calculate the time it takes for a single colloidal particle (i.e. in the limit of $\phi \to 0$) to diffuse a distance equal to its own diameter (in 3D). How does this so-called 'Brownian time' vary with R?
- e) Show that the typical time τ for a particle to travel the mean distance between the particles is proportional to $\phi^{-2/3}$ and calculate τ for a suspension with $\phi = 0.3$.

Problem 7

In this problem, we will look at the entropy-driven transition from the isotropic to the nematic phase in suspension of hard colloidal rods, as first described by Lars Onsager (in the 1940s): "The isotropic-nematic transition in a suspension of rods is driven by the loss of orientation entropy and the gain of free volume entropy."

- a) Explain the differences between the isotropic and nematic phase in terms of ordering of the centres and orientations of the rods in both phases.
- b) Now, we consider the *orientational* entropy of the isotropic and nematic phases. Using the Boltzmann equation for the entropy, $S = k_B \ln \Omega$, show that the change in orientational entropy for the isotropic-to-nematic transition can be estimated as

$$\Delta S_{or} = k_B \ln \frac{\Omega_N}{\Omega_I} \sim k_B \ln \frac{1}{4\pi} \sim -k_B.$$

Next, we consider the change in entropy due to the change in the excluded volume going from the isotropic to the nematic phase. To this end, we need the Gibbs-Duhem relation (from thermodynamics):

$$Nd\mu = -SdT,$$

and the following expression for the chemical potential

$$\mu = \mu_0 - k_B T \ln \frac{V_i}{V},$$

where μ_0 is a constant, V the volume and V_i the volume available to insert an extra particle. Note that $V_i = V - V_{excl}$, where V_{excl} is the *excluded volume*, i.e. the volume where no extra particle can be inserted (due to the presence of another rod), and at low concentrations $V \gg V_{excl}$.

c) Show that at low concentrations the 'excluded volume entropy' (per particle) is given by

$$\frac{S_{excl}}{N} = k_B \ln \frac{V_i}{V} \approx -k_B \frac{V_{excl}}{V}.$$

Hint: $\ln(1-x) \approx -x$.

d) Make a sketch to explain that the excluded volumes between two rods (length L and diameter D) in the isotropic and nematic phases are (approximately) given by

Isotropic phase: $V_{ex}^I \sim L^2 D$ Nematic phase: $V_{ex}^N \sim D^2 L$.

e) Show that the change in S_{excl} for the isotropic-to-nematic transition, $\Delta S_{excl} = S_{excl}^N - S_{excl}^I$, is

$$\Delta S_{excl} = k_B \rho L^2 D$$
, where $\rho = N/V$ is the number density.

f) Finally, the isotropic-nematic transition occurs at the number density (ρ^*) where the loss of orientational entropy is balanced by the gain of excluded volume entropy:

$$\Delta S_{or} + \Delta S_{excl} = 0.$$

Show that $\rho^* = 1/(L^2D)$, which is equivalent to a volume fraction of $\phi^* = \rho^* v_p = D/L$, where v_p is the volume of a rod, D^2L . This explain that for rods with L/D = 10 (which is not even that long) this *entropy-driven* transition already happens at very low concentrations!

Problem 8

Here, we follow Langevin's original paper (see the translation by D.S. Lemons and A. Gythiel, Am. J. Phys. 65, 1079 (1997)) to derive an expression for mean squared displacement of a Brownian particle of mass m. The Langevin equation in 1D is given by:

$$m\frac{d^2x}{dt^2} = F - \xi \frac{dx}{dt} + f(t),$$

where F is an external (driving) force, ξ is the Stokes friction factor and f(t) is a fluctuating random force with $\langle f(t) \rangle = 0$.

a) Multiply both sides of the Langevin equation by x and then use the hint below to show that

$$\frac{m}{2}\frac{d^2x^2}{dt^2} - m\left(\frac{dx}{dt}\right)^2 = Fx - \frac{\xi}{2}\frac{dx^2}{dt} + xf(t).$$

Hint: Note that $\frac{d^2x^2}{dt^2} = \frac{d}{dt}\left(\frac{dx^2}{dt}\right) = 2\left[x\frac{d^2x}{dt^2} + (\frac{dx}{dt})^2\right]$ as is easily shown using $dx^2 = 2xdx$.

b) Next, by (i) assuming that there is no external force, (ii) taking the ensemble average and (iii) then applying the equipartition theorem $m\langle \left(\frac{dx}{dt}\right)^2\rangle=k_BT$, show that one obtains

$$\frac{m}{2} \bigg\langle \frac{d^2 x^2}{dt^2} \bigg\rangle - k_B T = -\frac{\xi}{2} \bigg\langle \frac{dx^2}{dt} \bigg\rangle.$$

c) By taking $z = \langle dx^2/dt \rangle$, integrate the above equation to obtain

$$z = \frac{2k_BT}{\xi} + A\exp\left(-\frac{\xi t}{m}\right),\,$$

where A is a constant that does not depend on t.

Hint: take the indefinite integral, i.e. no integration boundaries, just add an integration constant.

d) For long times, i.e. $t \gg m/\xi$, show this equation can be solved to obtain the mean squared displacement in one dimension:

9

$$\langle x^2 \rangle = \frac{2k_B T}{\xi} t = 2Dt.$$