Soft Matter




Summary lecture 1

Colloidal gas

e Colloidal systems

e \Van der Waals interactions

— Hamaker constant

e Electrical double layer

— Debye length

Colloidal liquid

Colloidal crystal




Contents of the course

Introduction to Soft Matter
Colloids

* [nteractions between ‘macroscopic’ objects
* Brownian motion
* Entropy-driven phase transitions
* Polymers
* Interfaces and surfactants
e Optical microscopy and tweezing
 Mechanical properties of soft matter

* Q&A



Today’s lecture (2)

e Double layer repulsion
— Interaction between two charged surfaces

e DLVO theory

— Van der Waals interactions and double layer repulsion combined

e Brownian motion
— Diffusion coefficient
— Langevin equation
e Entropy driven phase transitions

— Crystallisation of hard spheres

— Liquid crystals



Last week: single charged surface

Boltzmann:
ny(x) = no exp |[—P(z)]
n_(x) = ngexp |[+P(x)]

Poisson’s Law:

Vip =L
€E€D

. Via (linearised) Poisson-Boltzmann equation:
@p : surface potential

¢(x) : electrostatic potential D(x) = Bpe *

®(x) = zep(x)B : dimensionless electrostatic potential



What happens when two charged
surfaces approach each other?

When surfaces approach, the counterions are pushed back towards the
charged surfaces — this reduces the electrostatic energy, which is an attractive force

So why do surfaces of like charge repel each other?

OSMOSIS



Repulsion due to osmotic pressure 11
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- Reminder: osmotic pressure I
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Van 't Hoff’s Law:
II = nkBT

11 = nexcesskBT

74 () = o] + [n-(z) = nol

Nexcess ($) -
=ny(x)+n_(z) —2ng



Repulsion due to osmotic pressure 11

- Number density distributions (between 2 charged surfaces):
- ni(x) = noexp [—Pa(z)]
.o f Boltzmann
— n_(x) = ngexp [+Pa(x)]
+
) - xr
- T Vig(z) = C) Poisson
- €€Q
o+
«—> Poisson-Boltzmann equation (for 2 charged surfaces)
D
Three options to find @,:
11 = nexcesskBT P 2
1. Solve full Poisson-Boltzmann equation
Nexcess () = [n4(x) = no] + [n—(x) — 1o 2. Linearise PB equation and solve for @,

= N4 (:U) +n_ (517) — 2ng 3. Superposition principle



Superposition principle to find ©,
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Evaluate osmotic pressure at the midpoint D/2

Electrostatic potential at the midpoint D/2: Number densities at the midpoint D/2:
1.0 D\ _
ny (2) = ngexp [~®,,]

omon () (2

n_(2) = g exp [+,

0.8t

0.6+

Dy 04

0.2}t

e (D) = dnokpT®5e "



Double layer repulsion

[1(D) = 4nokpT ®re "
|
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Interaction energy: work needed to bring the two plates together

U(D) = —/ [I(x)dx = 20 e P
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Today’s lecture (2)

e Double layer repulsion to Soft Matter
— Interaction between two charged surfaces

e DLVO theory

— Combining Van der Waals interactions and double layer repulsion

e Brownian motion
— Diffusion coefficient
— Langevin equation
e Entropy driven phase transitions

— Crystallisation of hard spheres

— Liquid crystals



Derjaguin-Landau-Verwey-Overbeek (DLVO) Theory

Combining the van der Waals attraction and the double layer repulsion

Landau

Overbeek, Qérjaguin

Casimir, Verwey, Lyklema, Overbeek



DLVO potential

Two plates
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* Much more difficult calculation, but similar physics



DLVO theory of colloid stability

Van der Waals ‘wins’ at both small and large separation: Colloids are kinetically stable

energy barrier

\ ‘ Predict effect of charge, salt, valency, temperature,
| . . .y .
ey pH, dielectric constant, ... on the stability of colloids
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see problem set



Measurements of DLVO interactions

the repulsive double layer part

40

45

Dobnikar et al, Phys. Rev. E 69, 031402 (2004)
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(e.g.) using optical tweezers: more about this in lecture 5

1.4



Today’s lecture (2)

e Double layer repulsion to Soft Matter
— Interaction between two charged surfaces

e DLVO theory

— Van der Waals interactions and double layer repulsion combined
e Brownian motion

— Langevin equation

— Diffusion coefficient
e Entropy driven phase transitions

— Crystallisation of hard spheres

— Liquid crystals



Robert Brown (1773 — 1858), Scottish botanist

Discovered ‘Brownian motion’ in suspensions
of plant pollen in 1827 (!)

Brownian motion

Brownian motion 3 um particles

Eleanor Mackay and Alice Thorneywork (University of Oxford)



Colloidal particles in a (molecular) solvent

solvent molecules Colloidal particle and solvent molecules (not to scale!)

Interact continuously Large colloidal particles buffeted continuously by solvent molecules

ith oth lecul
With ofher molecties Average force on particle: <f(t)> =0

But instantaneous force:  f(t) # 0



Three key equations in Brownian motion

kgl
§ =6mnR D = v (r*) = 6Dt
Stokes drag Diffusion coefficient Mean squared displacement

How do we understand these/where do they come from?

We start from the equation of motion:

The Langevin Equation



The Langevin Equation

... essentially F=ma ...

acceleration thermal force
\
m— =F +f(t) — &v

dt
/ drag

Paul Langevin
(1872 — 1946)

‘external’ force

£ =06mnR

(Stokes Equation)

v

n : solvent viscosity




Diffusion coefficient: diffusion down a
concentration gradient

I See also problem set I

. O >
‘ Low concentration ¢
High osmotic pressure I1 ‘ ‘ ‘ Low osmotic pressure 11

High chemical potential i Low chemical potential u

LL: work required to add one mole (or one particle)

High concentration ¢

kgl
= Einstein-Smoluchowski Equation: [ = el £ =6mnR

§



Solution to the Langevin equation

consider time scales short enough for random force not to average to zero

dv(t)
m— = = f(t) — &vi(t)

General solution for particle velocity *
t /
f(t
v(t) = exp <—£t> {V(O) +/ dt’ () exp (ét’ﬂ
m 0 m m

However, we can’t say much about v(t) as long as we don’t the details of f(t)

Instead look at the velocity autocorrelation function (v (0) - v (%))

* no need to learn this



Ensemble averages and ergodicity

‘ t1t25t3ét4

repeat experiment in time or in space

in equilibrium:

Therefore, look at ensemble averages ( )



Velocity autocorrelation function

How fast a Brownian particle forgets its initial velocity

() v(B) = 2 exp (- £41)

™m ™m

relaxation time of particle velocity T =

R=5nm : t=5.8ps
R=100nm :t=2.3ns
R=1um :t=0.2us

2.x10°7  4.x1077  6.x1077  8.x107  1.x107®
t(s)

A colloidal particle starts moving randomly after a very short amount of time

m
§



How far does a colloidal particle move?
Brownian motion as a random walk

r(t) = /0 t dt'v(t')

mean displacement

(r(t)) =0

mean squared displacement:

(r-r) = (r’(t))

Eleanor Mackay and Alice Thorneywork (University of Oxford)



How far does a colloidal particle move?
Mean squared displacement

Approach 1: work it out from (general) velocity autocorrelation function (multiple integrals)*

P(t) = /O dt'v (1)
|

(r*(t)) = /O dt’/o dt" (v(t') - v(t")) V(L) - v(t) = Bkw]iT oxi (—%]t ] t’!)
5 B 6kBT eXp(—t/T) 1 relaxation time of;ar;ticle velocity
oy = B2 (¢ 2REYDZL)

* no need to learn this, it’s a bit tricky, but very rewarding!




How far does a colloidal particle move?
Mean squared displacement

Approach 1: work it out from (general) velocity autocorrelation function (multiple integrals)

6]{ T _t L 1 relaxation time of particle velocity
_ bkp <t+exp( /7) ) o

f 17 =%

(r(t))

Now two important regimes can be identified:

3kpT
m

2 Short-time ballistic regime

t << T (r*(t)) =

. 6kpT
3

t =6Dt  Long-time diffusive regime

t> T (r?(t))



How far does a colloidal particle move?
Mean squared displacement

Approach 2: following Langevin himself: see problem set

(2°) = ZkBTTt = 2Dt

Paul Langevin
(1872 — 1946)

MSD in n-dimensions: <T2> = 2nDt



Typical time scale in colloids:
Brownian time (t;)

How long does it take for a particle to
diffuse over its own diameter (d)?

d2

<T2>:6Dt — TB:6—D

d=10nm Tg = 0.3 us
d=200nm 1t3=3ms

d=2},lm TB=3S



Other types of diffusion: rotational diffusion

kgl
8rnR3

Rotational diffusion constant of a sphere: Dp =

“How can you see if a sphere rotates?
Make it optically anisotropic!”

Perrin (1909)

On 11 November 1909, Einstein wrote to Perrin: “/ would
not have considered a measurement of rotations as
feasible. In my eyes it was only a pretty trifle”.

B.Duplantier, Brownian Motion, ‘Diverse and Undulating’ (2005)

T. Yanagishima et al., Phys. Rev. X 11, 021056 (2021)



Today’s lecture (2)

e Double layer repulsion to Soft Matter
— Interaction between two charged surfaces

e DLVO theory

— Van der Waals interactions and double layer repulsion combined

e Brownian motion
— Diffusion coefficient
— Langevin equation
e Entropy driven phase transitions

— Crystallisation of hard spheres

— Liquid crystals



Hard spheres

Simplest possible non-trivial interacting system

v(r)

oo forr<o
v(r) =
0 forr > o,

 Temperature does not play a role in the interaction
* We do still have Brownian motion!
* Packing fraction ¢ only relevant control parameter

* Minimising free energy by maximising entropy!



Phase behaviour of (colloidal) hard spheres

Low density fluid High density fluid Colloidal crystal!?

Phase Transition for a Hard Preliminary Results from a Recalculation
Sphere System of the Monte Carlo Equation of

State of Hard Spheres*

W. W. Woop ano J. D, Jacosson

Los Alamos Scientific Laboratory, Los Alamos, New Mexico
(Received August 15, 1957)

B. J. Aoer Axp T. E. WarNwriGHT
University of Califormia Radiation Laboratory, Livermore, California
(Received August 12, 1957)
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Alder, Wainwright and Mary Ann Mansigh



Phase behaviour of (colloidal) hard spheres

Low density fluid High density fluid Colloidal crystal!?
Phase Transition for a Hard Preliminary Results from a Recalculation
Sphere System of the Monte Carlo Equation of

State of Hard Spheres*

W. W. Woop ano J. D, Jacosson

Los Alamos Scientific Laboratory, Los Alamos, New Mexico
(Received August 15, 1957)

B. J. Aoer Axp T. E. WarNwriGHT
University of Califormia Radiation Laboratory, Livermore, California
(Received August 12, 1957)
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fluid coexistence crystal

Crystallisation ... gap .....with no attraction???!



No attraction, but still a phase transition:
let’s vote...??]

“...the transition goes a little bit against intuition; that
is why so many people have difficulty with it, and
surely, | am one of those.”

o ©

George E. Uhlenbeck
(1900-1988)

“I think it is quite unnecessary to have an attractive

force to achieve a crystalline phase and one can ﬁ“‘f ,{,/M,Ame
produce simple intuitive arguments for that.” (1907-1959)



The dark hand of entropy:
order through entropy

Boltzmann:
S — k’B In €2

() = number of microstates

* Brownian motion is crucial: “scanning” of microstates

* Minimising free energy by maximising entropy!



The dark hand of entropy:
order through entropy

Hard sphere crystallisation

Fluid: Crystal:
Disordered positions Ordered positions
% ®OO®®
Fluid Crystal
Sconfigurations high low
Sfree volume low high




3D hard spheres: experiments

Experimental verification using a colloidal model hard spheres (1986)

AccV Spot Magn Det WD Exp
200kv20 7712x SE 106 1

I
Fluid Fluid + Crystal Crystal 1 Glass

v

0.494 0.545 d

Pusey and van Megen, Nature, 320, 340 (1986)



Boehmite rods PMMA ellipsoids

TMV/fd-virus Silica rods

Rods with dimensions L/D > 4: Liquid Crystalline Phases

Concentration

>\ == ==

[ B _- _'

Isotropic Nematic

Smectic



Onsager: again ordering through entropy

Lars Onsager (1903-1976)
Nobel prize Chemistry 1968

1. Anisotropic Solutions of Colloids. LArs ONSAGER,
Yale University.—~The solutions of certain colloids com-
prised of highly asymmetrical particles—plates or rods—
are known to form anisotropic phases at remarkably low
concentrations. For tobacco mosaic virus (rods), isotropic
solutions containing 2-3 percent virus are in equilibrium
with anisotropic phases containing 3-4.5 percent, respec-
tively, according to the amount of electrolyte present.
This phenomenon can be explained as a result of repulsive
forces by the observation that the mutual co-volume of
two swarms of parallel rods (or plates) is roughly propor-
tional to the sine of the angle between their orientation,
and larger than the volume of the particles by a factor
which is proportional to the asymmetry. The case of rods
is particularly simple in that the virial coefficients of order
higher than 2 in Mayer’s expansion are small, and a quanti-
tative theory is possible. The computed ratio of concen-
trations at equilibrium is 1.34. The predicted osmotic
pressure of the anisotropic phase is nearly proportional
to the concentration, in fact, slightly greater than 3¢cRT/ V.




Entropy driven isotropic-nematic transition in rods

The isotropic-nematic transition
in a suspension of rods is driven

by the loss of orientation
entropy and the gain of free
volume entr OPY  onsager (1942,1949)

Lars Onsager (1903-1976)
Nobel prize Chemistry 1968

see also problem set
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Colloidal SU-8 rods:
colloidal liquid crystals

Isotropic Smectic-like
DA e
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Fernandez-Rico et. al, Adv. Mater., 1807514 (2019)



Contents of the course

Introduction to Soft Matter
Colloids

* |[nteractions between ‘macroscopic’ objects
* Brownian motion
* Entropy-driven phase transitions
* Polymers
* Interfaces and surfactants
e Optical microscopy and tweezing
 Mechanical properties of soft matter

* Q&A



