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Recommended course material

• Book: Physical Chemistry; P.W. Atkins, Oxford University Press, 11th edition (basic physical
chemistry)

• Book: Statistical Mechanics by McQuarrie

• Book: Introduction to Statistical Thermodynamics by Hill

• Book: The basics of crystallography and diffraction by Hammond, Oxford University Press, 4th
edition

• Lecture handouts

• All information will be available via inBrightspace and/orwww.dullenslab.com/teaching/fcm

Aim

• After this course, the students (i) has a good understanding of the basic thermodynamics and
statistical mechanics (of interacting systems), (ii) can explain and apply concepts from liquid state
theory to describe the structure and thermodynamics of liquids, (iii) is able to explain and apply
fundamental concepts of crystal structures and diffraction, and (iv) can relate the physical properties
of solids to their crystal structure.

Organisation

• Lectures

During the lectures (Monday, 15:30 – 17:15, and Thursday, 8:30 – 10:15, HG00.086) the main con-
tents of this Fundamentals of Condensed Matter course will (obviously) be discussed and explained.
Please bring a notebook (and an active mindset) to the lectures so that you can write (and think)
along. Note that the lectures and the suggested literature supplement each other, and some topics
will be presented differently than in the books.

• Problem Classes

The problems for the problem classes (Thursday, 10:30 – 12:15, HG03.085) will appear online
(www.dullenslab.com/teaching/fcm and/or Brightspace); answers will be available online
after the problem classes.

• Examination

The evaluation will consist of a 3-hour written exam. Graphical calculators are NOT allowed
during the exam (regular ones are).

• Video recordings

The lectures are not recorded.

2



Contents of Fundamentals of Condensed Matter

Lecture synopsis

1. Basic thermodynamics and statistical mechanics

2. Second virial coefficient

3. Structure of liquids

4. Complex fluids

5. Ordering and bonding in solids

6. Crystallographic symmetry

7. Diffraction techniques

8. Crystal engineering

9. Crystal growth and defects

10. Material properties

11. Tuning properties in semiconductors
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Problem set 1 – Liquids

Problem 1

Consider a process in which n moles of a perfect mono-atomic gas expands isothermally and reversibly
from volume V1 to volume V2 = 2V1.

a) What is the change in internal energy for this process?

b) Starting from the thermodynamic definition of entropy dS = dqrev
T show that the entropy change

∆S for this reversible expansion is given by

∆S = nR ln 2.

c) Write the answer to part b) in the form of Boltzmann’s statistical definition of entropy, S = kB lnΩ,
hence, show that Ω2

Ω1
= 2N . How does the number of possible ways to realise a given configuration

change due to the expansion?

d) From the fundamental equation for the Helmholtz free energy, derive the following Maxwell-relation(
∂S

∂V

)
T,n

=

(
∂p

∂T

)
V,n

.

and use this to calculate the entropy change for an isothermal expansion of a perfect monatomic
gas from volume V1 to volume V2 = 2V1 (cf part b).

Problem 2

a) Starting from the Gibbs-Duhem equation, dµ = −SmdT + VmdP , derive the Clapeyron equation,

dp

dT
=

∆Sm

∆Vm
.

b) Starting from the Clapeyron equation, clearly stating any approximations, derive the Clausius-
Clapeyron equation for the vapour pressure of a liquid

d ln p

dT
=

∆vapH

RT 2
.

c) The enthalpy of vaporization of water is 44.0 kJ mol−1 . Estimate the vapour pressure of water at
120 ◦C.
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Problem 3

The Van der Waals equation of state for one mole (n = 1) is given by

p =
RT

V − b
− a

V 2
.

a) Explain the physical significance of the Van der Waals parameters a and b.

The critical point is defined by the conditions(
∂p

∂V

)
T

= 0 and

(
∂2p

∂V 2

)
T

= 0.

b) Apply the above conditions to the Van der Waals equation state to find the critical volume Vc = 3b,
temperature Tc =

8a
27Rb and pressure pc =

a
27b2 .

c) Due to intermolecular interactions carbon dioxide cannot be treated as a perfect gas, but does obey
the Van der Waals equation. Given that a = 0.361 Jm3mol−2 and b = 42.9 · 10−6 m3mol−1 for
CO2, calculate the Vc, Tc and pc for carbon dioxide. How does it compare to the actual critical
temperature (304.2 K) and critical pressure (72.9 atm) of CO2?

The Van der Waals equation of state can also be written in terms of a virial expansion (for n = 1 mole):

p =
RT

V − b
− a

V 2
≈ RT

V

[
1 +

(
b− a

RT

) 1

V
+ ...

]
.

d) Calculate the Boyle temperature and explain why the Boyle temperature is generally higher than
the critical temperature for a given gas.

Problem 4

a) Explain briefly what is meant by a canonical ensemble, and why it is a useful concept in statistical
mechanics.

b) State how the internal energy (E) and the Helmholtz free energy (A) are related to the canonical
partition function Q ≡ Q(N,V, T ).

c) The canonical partition function for an interacting gas is given approximately by

Q =
1

N !

(
2πmkBT

h2

) 3N
2

(V −Nb)
N
exp

[
aN2

V kBT

]
where a and b are positive constants.
Show that p = kBT (∂ lnQ/∂V )N,T and, hence, obtain an expression for the pressure of the gas.
Comment on your result.

d) Show that the internal energy per atom is given by

E

N
=

3

2
kBT − a

N

V
.

and comment on the physical interpretation of the fact that this result does not depend upon b.
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Problem 5

a) Show that the molecular partition function for a harmonic oscillator, for the case that the zero-point
energy of the oscillator has been defined as zero, is given by

qvib =
(
1− e−hν/kBT

)−1

,

where the ν is the vibrational frequency (in s−1). Note that 1 + x+ x2 + ... = (1− x)−1.

b) The Einstein model of a solid comprises of N atoms free to undergo independent harmonic vibra-
tional motion along the x, y and z directions with the same Einstein frequency νE . Show that the
Einstein model of such a 3D solid with N atoms yields the following expression for internal energy

E(T ) = 3NhνE

(
ehνE/kBT − 1

)−1

.

c) Obtain an expression for the molar heat capacity of the solid at constant volume, CV = (∂E/∂T )V ,
and show that, if written in terms of the Einstein temperature θE = hνE/kB , the following result
is obtained

CV (T ) = 3NkB

(
θE
T

)2
eθE/T

(eθE/T − 1)2

[
= 3NkB

(
θE
T

)2
e−θE/T

(1− e−θE/T )2

]
.

Note that this is another example of the Law of Corresponding States: if plotted as a function of
the reduced temperature, T/θE , the heat capacity CV of various crystals will superimpose, just as
we have seen in lecture 1 for the Van der Waals equation of state.

Problem 6

A perfect monatomic gas in thermal equilibrium occupies a vertical cylinder of height h and cross-sectional
area A, in a uniform gravitational field with characteristic acceleration g.

a) Find an expression for the classical molecular partition function of the gas. Note that the potential
energy for a gas molecule equals mgz.

b) Show that in the limit of mgh/kBT becoming very small (i.e. in the limit of no gravity), the classical
molecular partition function of a perfect gas is recovered.

c) Estimate the height h at which this simplification breaks down for xenon.

Note that∫ ∞

−∞
exp(−αx2)dx =

√
π

α
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Problem set 2 – Liquids

Problem 7

The classical configuration integral is given by

ZN =

∫
...

∫
e−βU(τ1,...,τN )dτ1...dτN ,

where U(τ1, ..., τN ) is the total potential energy and β = 1/(kBT ).

a) Explain what is meant by pair-wise additivity and give the corresponding expression for U in terms
of the pair potential between particles i and j, ϕ(rij) = ϕij .

b) Use your above expression for U in terms of ϕij within the pair-wise additivity approximation
together with the definition of the Mayer f -function, fij ≡ e−βϕij − 1, to show that ZN can be
written as

ZN =

∫
...

∫ N∏
i>j

(1 + fij) dτ1...dτN .

c) Explain the significance of the Mayer f -function in performing the integrals in ZN . Include in your
answer a sketch of a realistic/reasonable pair potential ϕij and the corresponding Mayer f -function
fij .

Problem 8

For a monatomic system the second virial coefficient is given explicitly by

B2(T ) = −2π

∫ ∞

0

(
e−βϕ(r) − 1

)
r2dr

where ϕ(r) is the intermolecular pair potential and β = 1/(kBT ).

a) Sketch the square well potential defined as follows:

ϕ(r) =


∞ r < σ

−ϵ σ ≤ r ≤ λσ

0 r > λσ

b) Find an expression for the second virial coefficient for this potential.

c) The properties of Ar gas can be described using the square well potential with σ = 3.067Å, λ = 1.70
and ϵ/kB = 93.3K. Calculate the predicted value of the Boyle temperature.

Problem 9

The pair potential between molecules forming an imperfect gas can be described by the following inter-
action potential

ϕ(r) =

{
∞ r < σ

− A
r6 r ≥ σ

where A = 1.11× 10−78 J m6 is an interaction parameter and σ = 0.356 nm is the hard sphere diameter.
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a) Sketch the interaction potential ϕ(r) and calculate the depth of the potential energy at contact (i.e.
at r = σ).

b) Using that ϕ ≪ kBT for r ≥ σ, show that the second virial coefficient B2(T ) for this potential may
be written as

B2(T ) = 2π

∫ σ

0

r2dr + 2π

∫ ∞

σ

ϕ(r)

kBT
r2dr

c) The imperfect gas under consideration obeys the Van der Waals equation of state, which can also
be written in terms of a virial expansion

p =
NkBT

V −Nb
− a

(
N

V

)2

≈ kBT

[
ρ+

(
b− a

kBT

)
ρ2 + ...

]
Combine the answer to (b) and the above virial expansion to show that the van der Waals parameters
are given by

a = −2π

∫ ∞

σ

ϕ(r)r2dr b = 2π

∫ σ

0

r2dr

d) Hence, calculate a and b and explain their physical significance.

Problem 10 – Extra

Consider a Lennard-Jones gas for which the pair potential is

ϕ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

with ϵ the depth of the potential well and σ the particle diameter.

a) By transforming the integration variable from r to dimensionless distance y = r/σ and defining the
dimensionless temperature T ∗ = kBT/ϵ, show that

B2(T )/σ
3 = −2π

∫ ∞

0

[
exp

(
− 4

T ∗

[
y−12 − y−6

])
− 1

]
y2dy

Hence, the dimensionless second virial coefficient for a Lennard-Jones gas B∗
2(T

∗) = B2(T )/σ
3 is a

function solely of the dimensionless temperature T ∗.

b) Now assume hat the higher order virial coefficients for a Lennard-Jones gasB∗
n(T

∗) = Bn(T )/σ
3(n−1)

are likewise functions solely of T ∗, and define the dimensionless number density ρ∗ and the dimen-
sionless pressure p∗ by:

ρ∗ = ρσ3 p∗ =
pσ3

ϵ

Show from the virial expansion p = kBT
(
ρ+B2ρ

2 +B3ρ
3 + ...

)
that the equation of state of a

Lennard-Jones gas is a universal function of (p∗, ρ∗, T ∗). In other words, different Lennard-Jones
systems with different parameters σ and ϵ all have the same equation of state expressed in the
dimensionless quantities (p∗, ρ∗, T ∗). This is an(other) example of the ‘law of corresponding states’.
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Problem 11

In this problem we will obtain the expression for the radial distribution function g(r) in terms of the
configuration integral ZN (derived in lecture 4) in a slighly different way.

(a) Consider a one-component fluid. The probability that any particle is in dτ1 at r1 and any second
particle in dτ2 at r2, irrespective of the positions of the other N −2 particles, can also be expressed
in terms of the pair correlation function g(2)(r1, r2) :

ρ2g(2)(r1, r2)dτ1dτ2. (ρ = N/V ) Eq. 1

What would the above probability be if all the particles were independent of each other? In other
words, what would the value of g(2) be in this case and explain that the factor g(2) thus corrects
for the “non-independence”, i.e. the correlations between the particles.

Note that for isotropic and homogeneous systems such as liquids and gases, g(2)(r1, r2) only depends
on the relative distance between particles 1 and 2: g(2)(|r1 − r2|) = g(r), which is of course the
radial distribution function.

b) As we have seen in lecture 4, the probability that particle 1 is in dτ1 at r1 and particle 2 is in dτ2
at r2, irrespective of the positions of the other N − 2 particles, is:∫

dτ3 · · ·
∫
dτNe−βU(... )dτ1dτ2

ZN
. Eq. 2

Explain that the probability that any particle is in dτ1 and any second particle in dτ2, irrespective
of the positions of the other N − 2 particles, is the above probability multiplied by N !

(N−2)! .

c) Show that

N !

ρ2(N − 2)!
= V 2

[
1−

(
1

N

)]
. Eq. 3

d) Combine Eqs. 1 and 3 from parts a) and c) with your answer to part b) to obtain the expression
for the radial distribution function g(r) in terms of the configuration integral ZN (which was also
derived in lecture 4):

g(r) =
V 2

ZN

∫
dτ3 · · ·

∫
dτNe−βU(... ).

Problem 12

The compressibility equation is given by

1 + 4πρ

∫ ∞

0

h(r)r2dr = ρkBTκT , Eq. 1

where ρ = N
V is the number density, h(r) ≡ g(r)− 1 the total correlation function and κT = − 1

V

(
∂V
∂p

)
T

the isothermal compressibility.

(a) Show that the isothermal compressibility can be rewritten as

κT =
1

ρ

(
∂ρ

∂p

)
T

.

9



The second virial coefficient is given by

B2(T ) = −2π

∫ ∞

0

(
e−βϕ(r) − 1

)
r2dr, Eq. 2

where ϕ(r) is the interaction pair potential as a function of the separation r and β = 1/(kBT ).

(b) In the limit of small ρ we can assume that the radial distribution function g(r) = exp(−ϕ(r)β).
Use this to show that in the low density limit the compressibility equation can be written in terms
of B2 as

1− 2ρB2 = kBT

(
∂ρ

∂p

)
T

.

(c) Show that for small ρ this can be approximated as(
∂p

∂ρ

)
T

= kBT (1 + 2ρB2 + . . . ) .

and, hence, obtain an expression for the pressure. Comment on your answer.
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Problem set 3 – Liquids

Problem 13

a) Show that magnitude of the scattering vector is given by K ≡| K⃗ |= 4π
λ sin

(
θ
2

)
using the figure

below.

b) Calculate the scattering angle corresponding to aK-value of 0.015 nm−1 for light scattering (λ = 532
nm) and X-Ray scattering (λ = 0.15 nm).

c) The scattered intensity is proportional to the form factor P (K) times the structure factor S(K),
i.e. I(K) ∝ P (K)S(K). Briefly explain how the structure factor can be extracted from the total
scattered intensity in an experiment.

d) Sketch how the radial distribution functions and structure factors for a hard sphere system change
as the number density ρ is increased.

Problem 14

The Ornstein-Zernike equation can be written as

h12 = c12 + ρ

∫
dτ3c13h32.

a) Explain the meaning of each symbol, also taking into account the subscripts. Give physical inter-
pretations of h and c. What is meant by the term ’closure relation’?

b) Explain the basis for the Ornstein-Zernike equation in terms of direct and indirect interactions
using a sketch.

c) The Fourier transform of the Ornstein-Zernike equation reads

ĥ(K) = ĉ(K) + ρĉ(K)ĥ(K).

Show that this can be rearranged to

1 + ρĥ(K) =
1

1− ρĉ(K)
,

and explain the experimental significance of the left-hand side of this equation.

11



Problem 15

The compressibility equation is given by

1 + 4πρ

∫ ∞

0

h(r)r2dr = ρkBTκT , Eq. 1

where ρ = N
V is the number density, h(r) ≡ g(r) − 1 the total correlation function and κT = 1

ρ

(
∂ρ
∂P

)
T

the isothermal compressibility.

a) Sketch the total correlation function h(r) for a very dilute fluid of hard spheres. The hard spheres
have a diameter σ.

b) The structure factor for an isotropic fluid is given by

S(K) = 1 + ρ

∫
h(r)eiK⃗·r⃗dr⃗.

Show that the isothermal compressibility κT can be measured from a scattering experiment by
extrapolating the structure factor to K → 0, in other words, show that S(K → 0) = ρkBTκT .

c) For isotropic systems the structure factor can also be written in spherical coordinates:

S(K) = 1 +
4πρ

K

∫ ∞

0

h(r) sin(Kr)rdr.

Derive the following analytic expression for S(K) for a very dilute gas of hard spheres.

S(K) = 1 +
4πρ

K2

(
σ cos(Kσ)− sin(Kσ)

K

)
.

Hints: use your result from part a) and integration by parts.

d) Find the limit of S(K) as σ → 0, and then calculate the equation of state (the pressure) using the
result from part b), i.e. via the compressibility κT . Comment on your answers.

Problem 16

In the dilute limit (ρ → 0), the radial distribution function g(r) is related to the pair potential ϕ(r) via

g(r) = exp (−βϕ(r)) .

Sketch the pair potentials and corresponding radial distribution functions for the following systems at
low number density ρ:

a) perfect gas,

b) hard sphere gas (diameter σ),

c) attractive hard sphere gas (diameter σ).
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Problem 17

The internal energy E is related to the canonical partition function Q via

E = kBT
2

(
∂ lnQ

∂T

)
N,V

, with Q =
1

N !

(
2πmkBT

h2

) 3N
2

ZN .

Here ZN is the configuration integral ZN .

a) Use the above equations to show that

E =
3

2
NkBT + kT 2

(
∂ lnZN

∂T

)
N,V

(= Ekin + ⟨U⟩).

b) From part a), we see that ⟨U⟩ = kT 2
(
∂ lnZN

∂T

)
N,V

. Combine this with ZN =
∫
· · ·

∫
e−βU(τ1,...,τN )dτ1 · · · dτN

to show that

⟨U⟩ =
∫
dτ1 · · ·

∫
dτNUe−βU(... )

ZN
.

c) Next, using pairwise additivity, U =
∑

i>j ϕij , derive the following expression for the mean potential
energy in terms of the pair potential ϕ(r) and the radial distribution function g(r):

⟨U⟩ = 2πρN

∫ ∞

0

r2ϕ(r)g(r)dr.

d) Finally, using that in the dilute limit g(r) = exp(−βϕ(r), calculate the average potential energy for
the square well potential,

ϕ(r) =


∞ r < σ,

−ϵ σ ≤ r ≤ λσ,

0 r > λσ.

Comment on the result you obtain for the case that λ = 1.
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