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Introduction

Soft Matter is a class of matter that is governed by weak interactions, relatively large length scales
(nm − µm) compared to atomic and molecular system, and long time scales (seconds). As a result of
this, soft matter systems such as toothpaste, paint, beer froth, colloids, soap solutions or mayonnaise are
easily deformable, hence the term soft matter, and readily studied using optical microscopy techniques.
In this course, the fundamentals of soft matter will be introduced, which includes the main classes of soft
matter, their interactions, phase behaviour, dynamics and mechanical properties.

Recommended course material

• Book: Soft Matter Physics by M. Doi, Oxford University Press

• Book: Molecular Driving Forces by K.A. Dill and S. Bromberg, Garland Science

• Book: Soft Matter, Concepts, Phenomena and Applications by W. van Saarloos, V. Vitelli and Z.
Zeravcic, Princeton University Press

• Book: The Colloidal Domain by D. Fennell and H. Wennerström, Wiley

• All info will be available viawww.dullenslab.com/teaching/softmatter/ and/or in Brightspace

Aim

• After this course, the students will have

1. gained a general understanding of fundamental characteristics of soft matter

2. learned to understand and quantify interactions relevant in soft matter

3. learned to describe the phase behaviour of soft matter

4. obtained a quantitative understanding of wetting phenomena and the dynamics and mechanical
properties of soft matter

5. become familiar with the most common optical techniques to visualise and manipulate soft
matter

Organisation

• Lectures

During the lectures (Tuesday, 08:30 – 10:15, HG00.622) the main contents of this Soft Matter course
will (obviously) be discussed and explained. Please bring a notebook (and an active mindset) to
the lectures so that you can write (and think) along. Note that the lectures and the suggested
literature supplement each other, and some topics will be presented differently than in the books.

• Problem Classes

The problems for the problem classes (Thursday, 15:30 – 17:15, HG00.308) will appear online
(www.dullenslab.com/teaching or Brightspace); answers will be available online after the prob-
lem classes. The problems in the classes will be representative for the exam.

• Examination

The evaluation will consist of a 3-hour written exam.

Graphical calculators are NOT allowed during the exam (regular ones are).

• Video recordings

The lectures will be recorded and will be available on Brightspace.
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Contents of Soft Matter

Synopsis

1. Introduction to Soft Matter

2. Colloids

(a) Van der Waals interactions

(b) Double layer interactions

(c) DLVO potential

(d) Brownian motion

(e) Phase behaviour

3. Polymers

(a) Dimensions of polymers: ideal and real chains

(b) Phase behaviour: Flory-Huggins theory

(c) Polymer solutions: dilute, semidilute and entangled

(d) Dynamics

4. Interfaces and surfactants

(a) Interfacial tension

(b) Wetting: Laplace and Young equations

(c) Capillary rise

(d) Surfactants: micelles and Gibbs adsorption equation

5. Light scattering, optical microscopy and tweezing

(a) Static and dynamic light scattering

(b) Brightfield microscopy: image formation

(c) Confocal microscopy

(d) Optical tweezing

6. Mechanical properties of soft matter

(a) Deformation of soft matter

(b) Introduction to rheology
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Problem set 1 – Soft Matter

Problem 1

Due to gravity colloidal particles in suspension form of a sedimentation equilibrium, which is characterised
by a height-dependent number density n(z). The (osmotic) pressure at a height h (w.r.t the bottom of
the container) at low concentrations (i.e. assuming no interactions) is given by Π(h) = n(h)kBT .

a) Explain what is meant by the buoyant mass of a colloidal particle of mass density ρc in a solvent
of mass density ρs? Write down the expression for the gravitational force acting an a particle in
terms of the particle volume V and the mass density difference ∆ρ = ρc − ρs.

b) The upward force, due to the osmotic pressure gradient, acting on a particle in a sedimentation
equilibrium is given by

Fup = − 1

n(h)

dΠ

dh
.

Verify by dimensional analysis that this expression indeed has the units of a force.

c) Balance the forces from parts a) and b) and solve the resulting differential equation to obtain the
so-called barometric height distribution for the particle density n as a function of height h:

n(h) = n(0) exp

(
−∆ρV gh

kBT

)
.

d) Calculate the decay length – which is often referred to as the gravitational length – of the exponential
function (i.e. the height at which n(h)/n(0) = e−1) for polystyrene particles of diameter

– 0.1 µm

– 1 µm

– 10 µm

in water at 300 K. Note that the density of polystyrene = 1.05 g cm−3.

Comment on the values you obtain, especially in relation to the extent of the Earth’s atmosphere
(what would be the gravitational length of an oxygen molecule?).

Problem 2

When octane is placed in a quartz vessel, the octane wets the walls of the vessel as schematically shown
in the figure below.

The energy, U , per unit area of a film of octane of
thickness, D, due to van der Waals interactions can
be described by

U(D) =
−A

12πD2
,

where the Hamaker constant A = −7 · 10−21 J.
The gravitational potential energy per unit area of
the film at a height, h, above the liquid surface is
given by U = ρghD, with ρ the density of the liquid
(= 703 kg m−3 for octane) and g = 9.81 m s−2.

a) Sketch the form of each of these two potentials (for A < 0), and of their sum, as a function of D.
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b) Evaluate the equilibrium thickness of the film at h = 1 cm.

The Hamaker constant for water interacting with itself across a vacuum is Aww = 3.7 · 10−20 J while for
a typical hydrocarbon oil, Aoo = 5.1 · 10−20 J.

c) Estimate the Hamaker constant, Awo, for water interacting with oil across a vacuum.

d) Determine the sign of the Hamaker constant for a film of oil on water in air. Note that the combining
relation for medium 1 interacting with medium 2 across medium 3: A132 ≈ A12 +A33 −A13 −A23.

e) Hence predict whether oil will spread on water.

Problem 3

The Debye length depends on the salt concentration via the bulk number density n0 as given by

κ−1 =

√
ϵϵ0kBT

2e2n0z2
,

where ϵ is relative permittivity, ϵ0 the permittivity in vacuum (ϵ0 = 8.85 · 10−12 C2/N m2), z the valency
of the ions and e the elementary charge.

a) Calculate the Debye length in 1.00 mM KNO3 (for water at T = 298 K and ϵ = 78).

b) Explain whether the Debye length will be smaller or larger in a solution of (i) 1.75 mM KNO3 and
(ii) 1.00 mM K2SO4?

The exact solution of the Poisson-Boltzmann equation for a charged surface is given by the Gouy-
Chapman equation for the dimensionless electrostatic potential:

Φ(x) = 2 ln

[
1 + tanh(Φ0/4)e

−κx

1− tanh(Φ0/4)e−κx

]
.

c) Show that for small dimensionless surface potentials, i.e. Φ0 ≪ 1, the solution to the linearised
Poisson-Boltzmann equation is recovered (Φ(x) = Φ0e

−κx).

Hint: Use that for x ≪ 1 tanhx ≈ x and ln(1 + x) ≈ x (also in that order actually!)

d) Explain what is meant by the electric double layer and what the significance of the Debye length
κ−1 is in this respect?

The relation between the thickness of the double layer and κ−1 can also be demonstrated using the
condition for electro-neutrality. The surface charge density (of the charged surface), σ, must be exactly
matched by the integrated charge density in the solution, ρ(x):

σ = −
∫ ∞

0

ρ(x)dx.

e) Given that for small surface potentials, ρ(x) ≈ −2zen0Φ(x), show that

σ = ϵϵ0κϕ0.

Note that this result is identical to that for a dielectric-filled capacitor with charge σ, potential
ϕ0 and a plate–plate separation of κ−1; hence the analogy between the thickness of the electrical
double layer and the separation between the oppositely charged plates of the capacitor.

f) Calculate ϕ0 for a typical surface charge density of colloids in water, σ = 1 e/nm2, and a salt
concentration of 0.1 M NaCl. Is the linear Poisson-Boltzmann equation, valid for ϕ0 < 26 mV,
typically applicable for colloidal particles?
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Problem 4

a) The Van der Waals interaction between two spheres of radius R and separated by a distance D is
given by U = −AR/12D, where A is the Hamaker constant.

– Calculate U between two R = 0.5 µm silica spheres (A11 = 6 · 10−20 J) separated by 100 nm
in vacuum.

– Repeat the calculation for silica in water, where A131 = 0.8 · 10−20 J.

– Compare both values to the thermal energy of the particles at room temperature.

In the lectures, the Van der Waals interaction (per unit area) between two half spaces was calculated.
Here, we will follow the same strategy to calculate the Van der Waals interaction (per unit area) between
two plates of finite thickness T at a separation D, as shown in the diagram below.

b) Starting from the interaction between two atoms being U = −C/r6, first show that the interaction
between 1 atom and a plate of thickness T and number density ρ, separated by a distance D, is

U(D) = −πCρ

6

(
1

D3
− 1

(D + T )3

)
.

Hint: use that xdx = 1
2dx

2.

Note that for T → ∞ the ‘atom – half space’ interaction is recovered (−πCρ/6D3) .

c) Next, calculate the interaction between two plates by integrating over the second plate of thickness
T and number density ρ and express your answer in terms of the Hamaker constant A = π2Cρ2.
Hence, show that the Van der Waals interaction (per unit area) between two plates of thickness T
at a separation D is

U(D) = − A

12π

(
1

D2
− 2

(D + T )2
+

1

(D + 2T )2

)
,

Note again that for T → ∞ the ‘half space – half space’ interaction is recovered (−A/12πD2).
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Problem set 2 – Soft Matter

Problem 5

Two sapphire surfaces in a 1 mM NaCl solution (κ−1 ≈ 10 nm, ϵ = 78) are separated by D = 20 nm. The
Hamaker constant for sapphire–water-sapphire is A131 = 6.7·10−20 J and surface charge σ = 1.5 mC m−2.

a) Given that calculate the attractive pressure, Π = −dU/dD, due to the attractive van der Waals
interaction, U = −A/12πD2.

b) Calculate the repulsive pressure between the sapphire surfaces, Π(D) = 2σ2

ϵϵ0
e−κD, and compare the

value you obtain to your answer in part a): is the repulsive pressure enough to prevent the sapphire
surfaces from sticking to each other or not? (ϵ0 = 8.85 · 10−12 C2 N−1m−2)

The interaction energy between spherical silica particles in a stable colloidal suspension at pH 7 in an
aqueous NaCl solution is shown in the diagram below.

c) Explain the factors that determine the shape of the curve.

d) Explain why each of the following actions may
lead to aggregation of the silica particles:

- increasing the NaCl concentration.

- adding a divalent electrolyte.

- adding methanol to the solution.

- reducing the pH (note: the isoelectric point
of silica is around pH = 2).

Problem 6

The one-dimensional (1D) motion of a colloidal particle with mass m and radius a in a fluid medium is
described by the Langevin equation,

m
dv(t)

dt
= F − ξv(t) + f(t),

where v is the instantaneous velocity, ξ the friction coefficient, F the external force on the particle and
f(t) the fluctuating force.

a) Carefully explain the origin of Brownian motion and why ⟨f(t)⟩ = 0.

Consider the steady-state diffusion of spherical particles down a concentration gradient, dc/dx. The
force on a single particle is given by F = −dµ/dx, in which the chemical potential has the form µ =
µ−⊖− + kBT ln c/c−⊖−, where µ−⊖− and c−⊖− are constants.

b) Find an expression for F and hence show that

⟨v⟩ = −kBT

ξc

dc

dx
.

c) Write an expression for the flux J (units mol m−2 s−1) in terms of ⟨v⟩, and by comparing it with
Fick’s First Law, J = −D dc/dx, show that the diffusion coefficient D is given by (Stokes-Einstein)

D =
kBT

ξ
.
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Consider a suspension of N colloidal particles of radius R = 1 µm in water (η = 0.89 · 10−3 Pa s) in a
volume V at T = 298 K. The volume fraction ϕ is defined as ϕ = ρvp, where ρ = N/V (number density)
and vp the particle volume. The Stokes friction factor for a sphere of radius R in a solvent of viscosity η
is ξ = 6πηR.

d) The mean squared displacement is given by ⟨r2(t)⟩ = 6Dt (see also problem 8). Calculate the time
it takes for a single colloidal particle (i.e. in the limit of ϕ → 0) to diffuse a distance equal to its
own diameter (in 3D). How does this so-called ‘Brownian time’ vary with R?

e) Show that the typical time τ for a particle to travel the mean distance between the particles is
proportional to ϕ−2/3 and calculate τ for a suspension with ϕ = 0.3.

Problem 7

In this problem, we will look at the entropy-driven transition from the isotropic to the nematic phase
in suspension of hard colloidal rods, as first described by Lars Onsager (in the 1940s): “The isotropic-
nematic transition in a suspension of rods is driven by the loss of orientation entropy and the gain of free
volume entropy.”

a) Explain the differences between the isotropic and nematic phase in terms of ordering of the centres
and orientations of the rods in both phases.

b) Now, we consider the orientational entropy of the isotropic and nematic phases. Using the Boltz-
mann equation for the entropy, S = kB lnΩ, show that the change in orientational entropy for the
isotropic-to-nematic transition can be estimated as

∆Sor = kB ln
ΩN

ΩI
∼ kB ln

1

4π
∼ −kB .

Next, we consider the change in entropy due to the change in the excluded volume going from the isotropic
to the nematic phase. To this end, we need the Gibbs-Duhem relation (from thermodynamics):

Ndµ = −SdT,

and the following expression for the chemical potential

µ = µ0 − kBT ln
Vi

V
,

where µ0 is a constant, V the volume and Vi the volume available to insert an extra particle. Note that
Vi = V −Vexcl, where Vexcl is the excluded volume, i.e. the volume where no extra particle can be inserted
(due to the presence of another rod), and at low concentrations V ≫ Vexcl.

c) Show that at low concentrations the ‘excluded volume entropy’ (per particle) is given by

Sexcl

N
= kB ln

Vi

V
≈ −kB

Vexcl

V
.

Hint: ln(1− x) ≈ −x.

d) Make a sketch to explain that the excluded volumes between two rods (length L and diameter D)
in the isotropic and nematic phases are (approximately) given by

Isotropic phase: V I
ex ∼ L2D Nematic phase: V N

ex ∼ D2L.

e) Show that the change in Sexcl for the isotropic-to-nematic transition, ∆Sexcl = SN
excl − SI

excl, is

∆Sexcl = kBρL
2D, where ρ = N/V is the number density.
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f) Finally, the isotropic-nematic transition occurs at the number density (ρ∗) where the loss of orien-
tational entropy is balanced by the gain of excluded volume entropy:

∆Sor +∆Sexcl = 0.

Show that ρ∗ = 1/(L2D), which is equivalent to a volume fraction of ϕ∗ = ρ∗vp = D/L, where vp
is the volume of a rod, D2L. This explain that for rods with L/D = 10 (which is not even that
long) this entropy-driven transition already happens at very low concentrations!

Problem 8

Here, we follow Langevin’s original paper (see the translation by D.S. Lemons and A. Gythiel, Am. J.
Phys. 65, 1079 (1997)) to derive an expression for mean squared displacement of a Brownian particle of
mass m. The Langevin equation in 1D is given by:

m
d2x

dt2
= F − ξ

dx

dt
+ f(t),

where F is an external (driving) force, ξ is the Stokes friction factor and f(t) is a fluctuating random
force with ⟨f(t)⟩ = 0.

a) Multiply both sides of the Langevin equation by x and then use the hint below to show that

m

2

d2x2

dt2
−m

(
dx

dt

)2

= Fx− ξ

2

dx2

dt
+ xf(t).

Hint: Note that d2x2

dt2 = d
dt

(
dx2

dt

)
= 2

[
xd2x

dt2 + (dxdt )
2
]
as is easily shown using dx2 = 2xdx.

b) Next, by (i) assuming that there is no external force, (ii) taking the ensemble average and (iii) then

applying the equipartition theorem m⟨
(
dx
dt

)2⟩ = kBT , show that one obtains

m

2

〈
d2x2

dt2

〉
− kBT = −ξ

2

〈
dx2

dt

〉
.

c) By taking z = ⟨dx2/dt⟩, integrate the above equation to obtain

z =
2kBT

ξ
+A exp

(
− ξt

m

)
,

where A is a constant that does not depend on t.

Hint: take the indefinite integral, i.e. no integration boundaries, just add an integration constant.

d) For long times, i.e. t ≫ m/ξ, show this equation can be solved to obtain the mean squared
displacement in one dimension:

⟨x2⟩ = 2kBT

ξ
t = 2Dt.
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