Fundamentals of Condensed Matter (lecture 4)

Summary lecture 3

Pairwise additivity

Second virial coefficient

- B2 for various model potentials
 - Hard spheres
 - Square well potential
 - Van der Waals

$$U_{tot} = \frac{1}{2} \sum_{i \neq j} \phi(r_{ij}) = \sum_{i > j} \phi(r_{ij})$$

$$B_2(T) = -2\pi \int_0^\infty \left(e^{-\beta \phi(r)} - 1 \right) r^2 dr$$

$$B_2 = \frac{2\pi\sigma^3}{3}$$

$$B_2 = \frac{2\pi\sigma^3}{3} \left[1 - \left(\lambda^3 - 1\right) \left(e^{\beta\epsilon} - 1 \right) \right]$$

$$B_2 = b - \frac{a}{kT}$$

$$a = -2\pi \int_{\sigma}^{\infty} \phi(r)r^2 dr$$

$$b = 2\pi \int_{0}^{\sigma} r^2 dr = \frac{2\pi\sigma^3}{3}$$

Content of the Liquids part (lectures 1-6)

Today, lecture (4)

- Recap thermodynamics and phase diagrams
- Recap statistical mechanics and classical statistical mechanics
- Second virial coefficient and model liquids
- Structure of liquids and compressibility relation
- Ornstein-Zernike relation and link to (scattering) experiments
- Complex and biological fluids

Today's lecture (4)

- Structure of liquids
 - Radial distribution function g(r)
- Compressibility equation
 - g(r) in terms of configuration integral
 - Fluctuations
 - Compressibility
 - Compressibility equation

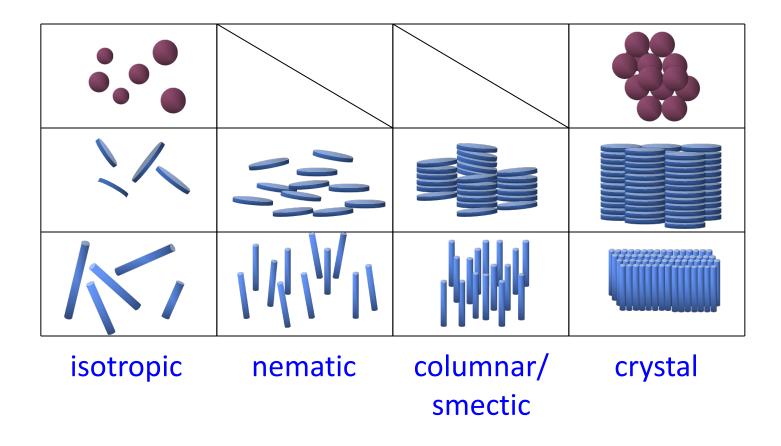
Why do liquids exist?

"Assume that a group of intelligent theoretical physicists had lived in closed buildings from birth such that they never had occasion to see any natural structures. ... They probably would predict the existence of atoms, of molecules, of solid crystals (...), of gases, but most likely not the existence of liquids."

V.F. Weisskopf, Trans. NY Acad. Sci. II 38, 202 (1977)

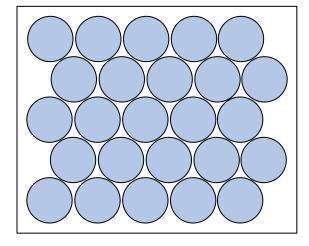
Structural knowledge is essential

(Complex) liquids: strong links between structure, thermodynamics and (pair) interactions

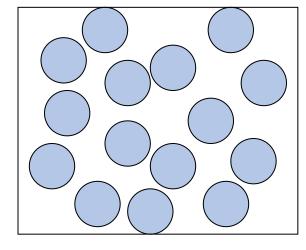


Structure of liquids

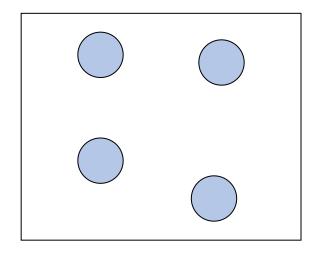
Crystal



Liquid



Gas



High density

Long range order

Vibrations at lattice site

A bit of both

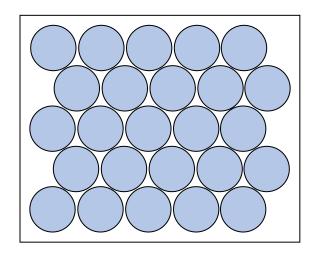
Low density

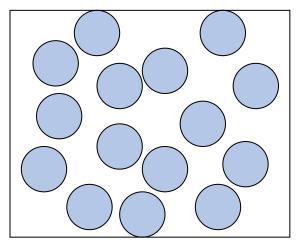
No order

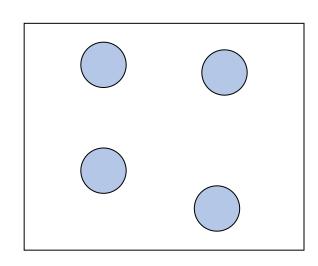
Lots of movement

Reference structure for liquids?

Crystal Liquid Gas







Perfect crystals of independent atoms

(Einstein crystal, see lecture 2 and problem set)

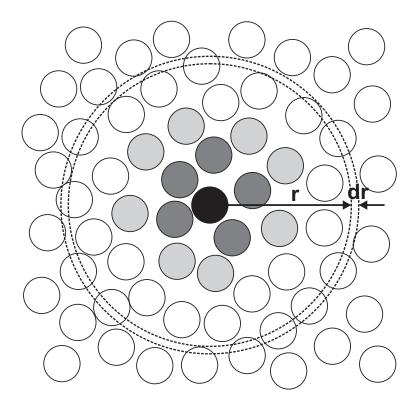
?

Perfect gas

Quantifying the structure of liquids

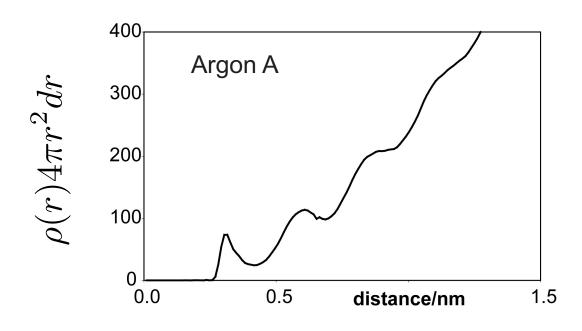
average number density

$$\rho = \frac{N}{V}$$



average number of particles between r and r+dr

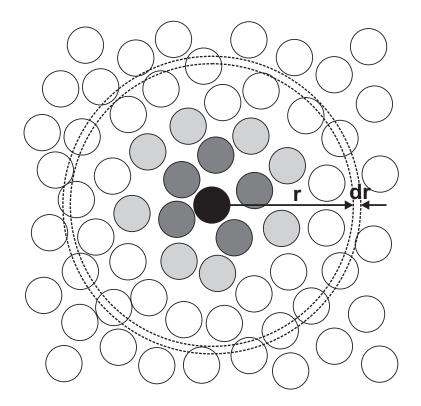
$$\rho(r)4\pi r^2 dr$$



Quantifying the structure of liquids

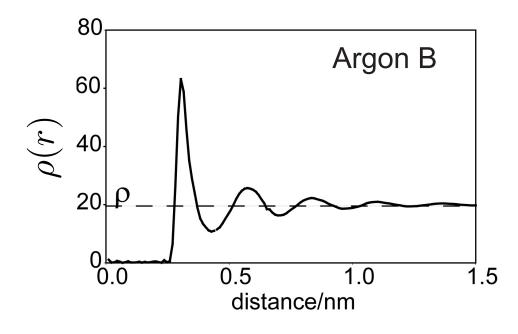
average number density

$$\rho = \frac{N}{V}$$



radially averaged number density

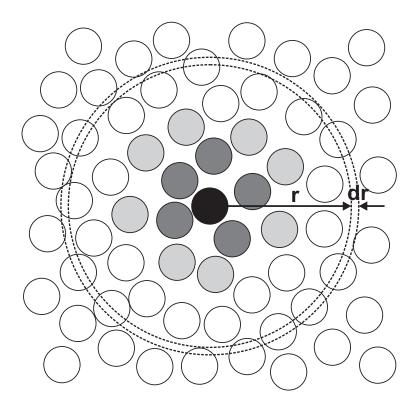
$$\rho(r)$$



Quantifying the structure of liquids

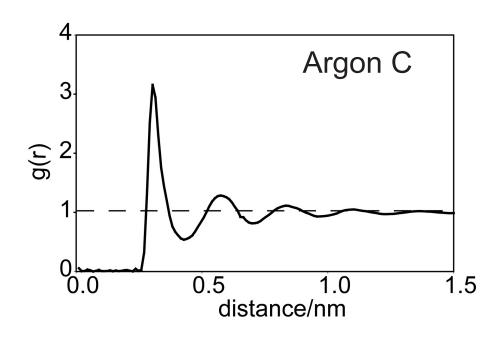
average number density

$$\rho = \frac{N}{V}$$

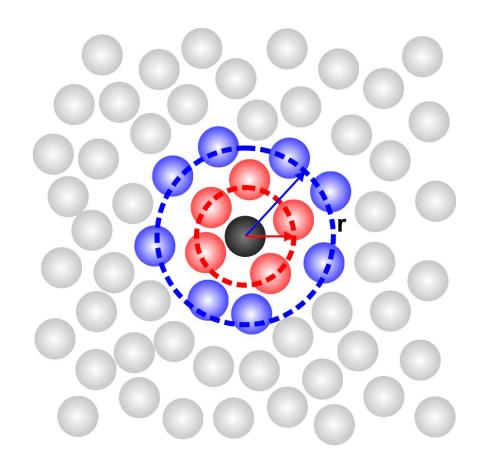


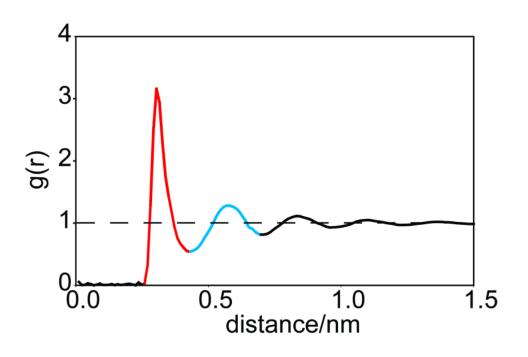
radial distribution function

$$g(r) = \frac{\rho(r)}{\rho}$$



Coordination shells

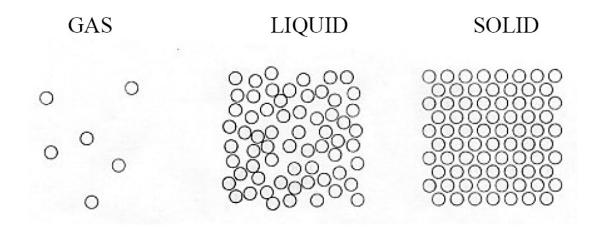


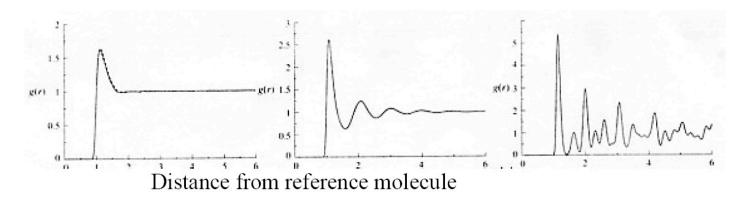


average number of particles between r and r+dr

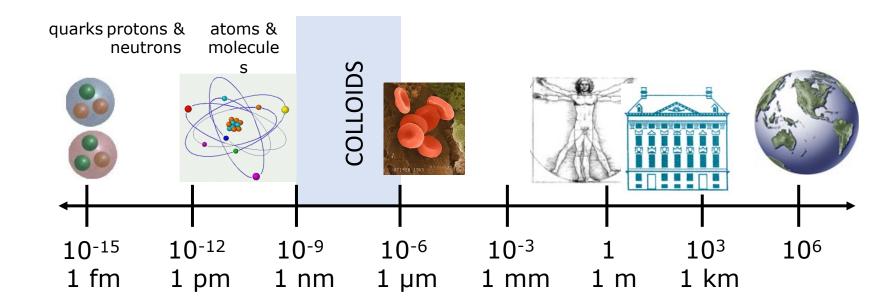
$$\rho(r)4\pi r^2 dr = \rho g(r)4\pi r^2 dr$$

Gas, liquid and crystal g(r)





Intermezzo: Colloids



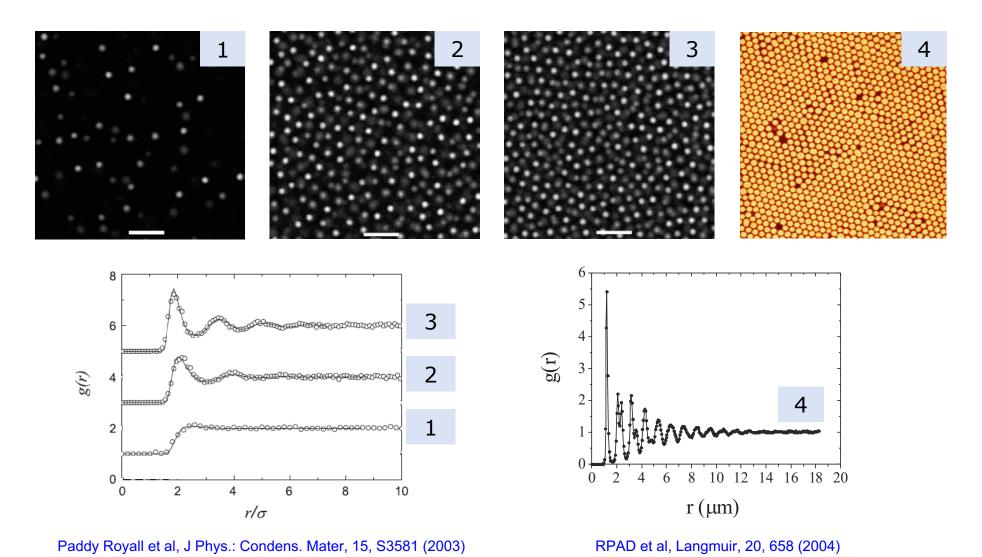
Same statistical thermo → Similar phase behaviour

Colloids = (huge) "model atoms"

3rd year BSc course 'Soft Matter' by Evan Spruijt and RD

Colloidal gas, liquid and crystal g(r)

What you see is what you get: picture \leftrightarrow g(r)



g(r) of atoms and molecules

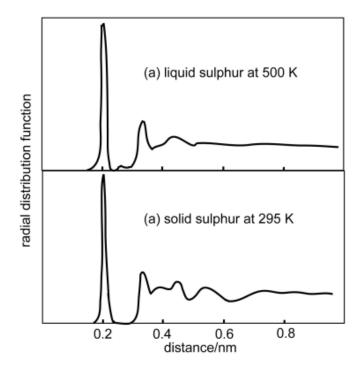
Mono-atomic liquids → "particle-picture" applies

Molecular liquids → "particle-picture" may fail

Example: Sulfur S₈

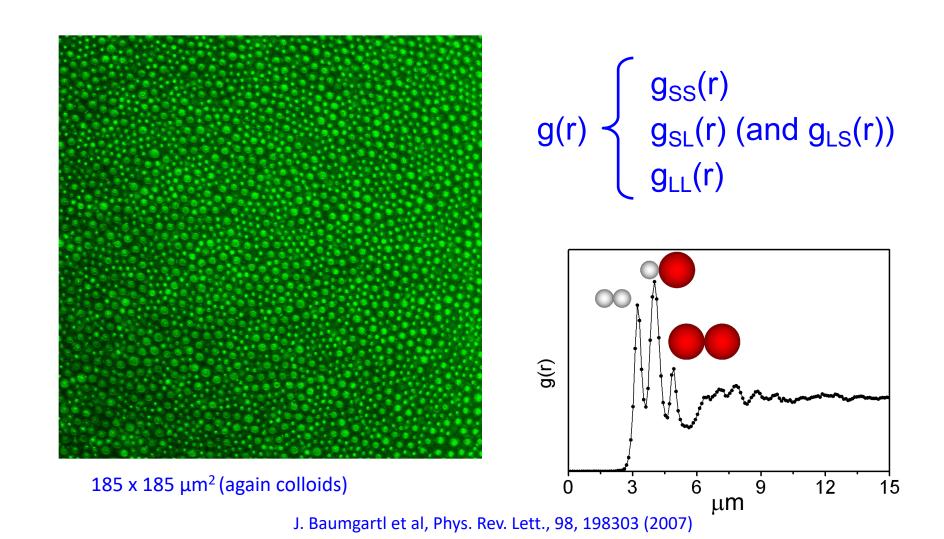


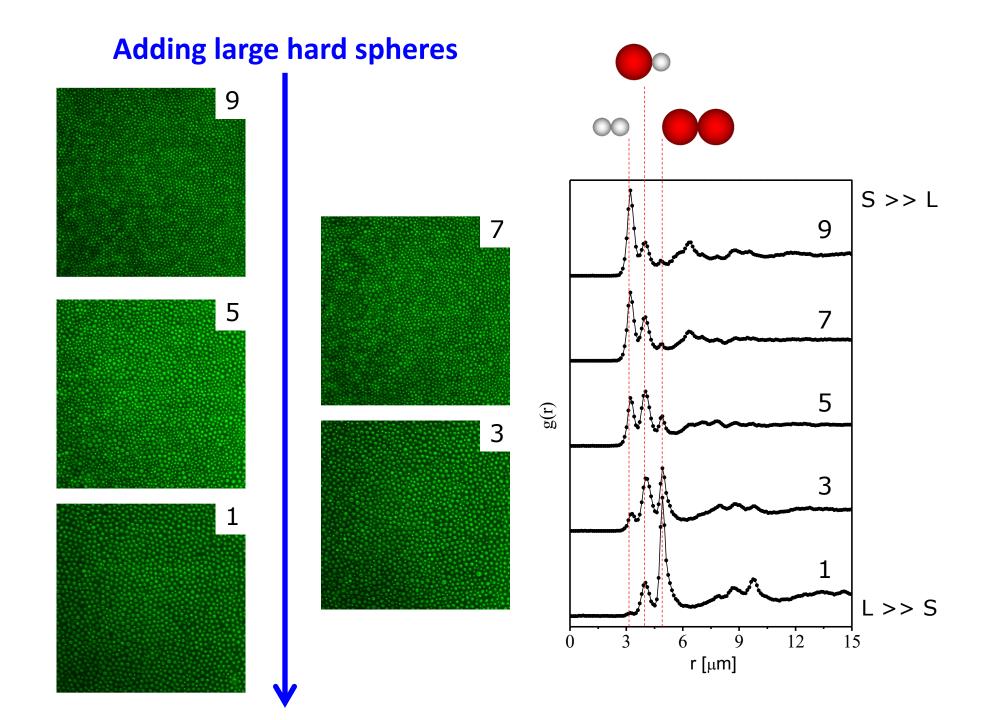
- 'intra-ring' S-S distance
- 'inter-ring' S-S distance



g(r) of mixtures

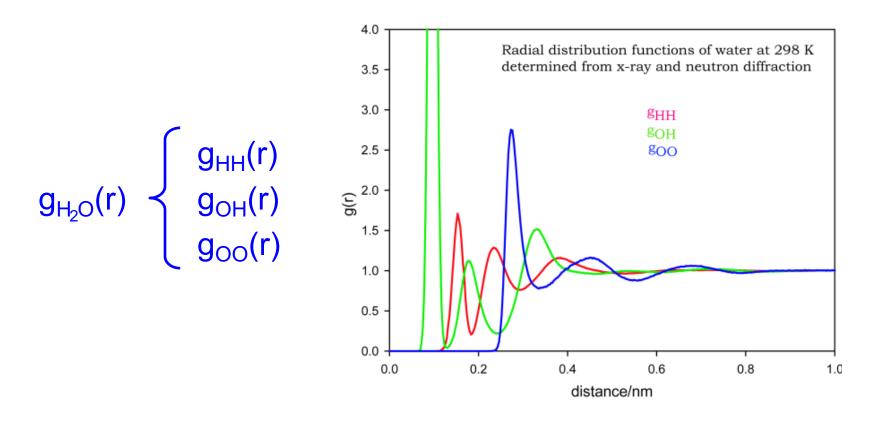
Simplest mixture: binary system of large and small hard spheres





Molecular 'binary' g(r): H₂O

`partial radial distribution functions' for water



radial distribution functions can be directly measured (lecture 5)

Today's lecture (4)

- Structure of liquids
 - Radial distribution function g(r)

Compressibility equation

- g(r) in terms of configuration integral
- Fluctuations
- Compressibility
- Compressibility equation

Compressibility relation

link between structure [g(r)] and thermodynamics [κ_{τ}]

interactions!!

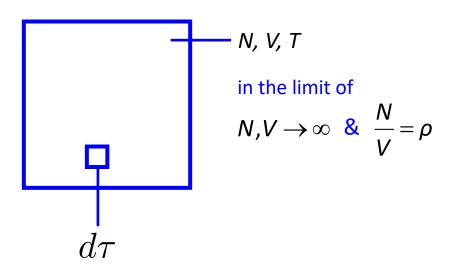
- I. Find expression for radial distribution function in terms of Z_N
- II. Use expression for g(r) to quantify fluctuations

Related to the isothermal compressibility κ_T

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$$

$$\rho = \frac{N}{V}$$

I. Expression for $g(r) = \frac{\rho(r)}{\rho}$



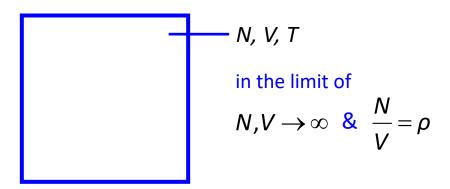
Average number of particles in $d\tau$?

$$\langle N \rangle$$
 in $d\tau$ = probability that a particle is in $d\tau$

$$\langle N(r) \rangle$$
 in $d\tau$ = probability that a particle is at distance r in $d\tau$ $\rho(r)d\tau$

 $\rho d\tau$

I. Expression for $g(r) = \frac{\rho(r)}{\rho}$



probability to find certain configuration

Configuration integral

$$Z_N = \int \cdots \int e^{-\beta U(x_1, \dots, z_N)} d\tau_1 \cdots d\tau_N \qquad \rightarrow \qquad Z_N = \int_V d\tau_1 \int_V d\tau_2 \cdots \int_V d\tau_N e^{-\beta U(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_N)}$$

I. Expression for g(r) ... cont'd

$$g(r) = \frac{V^2}{Z_N} \int_V d\tau_3 \cdots \int_V d\tau_N e^{-\beta U(\vec{r}, \vec{r}', \vec{r}_3, ..., \vec{r}_N)}$$

in the limit of
$$N,V \rightarrow \infty$$
 & $\frac{N}{V}=\rho$

Compressibility relation

link between structure [g(r)] and thermodynamics [κ_{τ}]

interactions!!

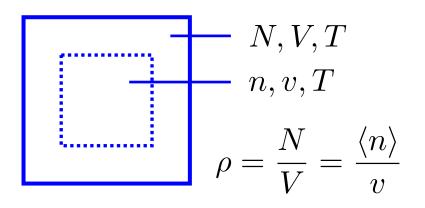
- Find expression for radial distribution function in terms of Z_N
- II. Use expression for g(r) to quantify fluctuations

Related to the isothermal compressibility κ_T

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$$

$$\rho = \frac{N}{V}$$

II. Fluctuations (grand-canonical ensemble)



Fluctuations in $n \rightarrow Variance$

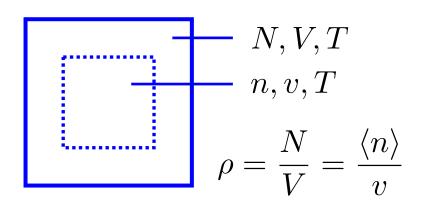
$$\langle n^2 \rangle - \langle n \rangle^2 = \rho^2 k_B T v \kappa_T^*$$

with compressibility

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$$

Calculate $\langle n^2 \rangle - \langle n \rangle^2$ using expression for g(r) ...

Fluctuations ... cont'd



Define

$$q(\vec{r}) = \begin{cases} 1 & \text{if} \quad \vec{r} \in v \\ 0 & \text{if} \quad \vec{r} \notin v \end{cases}$$

Counts number of particles in v

$$\sum_{i=1}^{N} q(\vec{r_i}) = n$$

Calculate
$$\langle n^2 \rangle - \langle n \rangle^2$$
 Start with $\langle n^2 \rangle$

Fluctuations ... cont'd ... cont'd

$$\langle n^2 \rangle = \langle n \rangle + \rho^2 v \int d\tau \left[g(r) - 1 \right] + \langle n \rangle^2$$

total correlation function: $h(r) \equiv g(r) - 1$

Compressibility relation

we obtained:
$$\langle n^2 \rangle - \langle n \rangle^2 = \langle n \rangle + \rho^2 v \int h(r) d\tau$$

started with:
$$\langle n^2 \rangle - \langle n \rangle^2 = \rho^2 k_B T v \kappa_T$$

$$1 + \rho \int h(r)d\tau = \rho k_B T \kappa_T$$
$$1 + 4\pi \rho \int_0^\infty h(r)r^2 dr = \rho k_B T \kappa_T$$

Link between *structure* and *thermodynamics*

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$$

Next lecture: Ornstein-Zernike relation

Link between interaction potential and structure

$$h_{12} = c_{12} + \rho \int d\tau_3 c_{13} h_{32}$$
 or

$$\hat{h}(k) = \hat{c}(k) + \rho \hat{c}(k)\hat{h}(k)$$

• Link with (scattering) experiments

Content of the Liquids part (lectures 1-6)

- Recap thermodynamics and phase diagrams
- Recap statistical mechanics and classical statistical mechanics
- Second virial coefficient and model liquids
- Structure of liquids and compressibility relation
- Ornstein-Zernike relation and link to (scattering) experiments ——— Next lecture (5)
- Complex and biological fluids