Fundamentals of Condensed Matter

(lecture 6)
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Summary lecture 5

e Ornstein-Zernike equation hi2 = c12 + P/d73613h32
i form of in-Zernik 1+ ph(K) = ——
e Fourier transtform of Ornstein-Zernike P 1 pé(K)
Structure factor (scattering) S(K) = ~ <Z e J
@]

e Links Ornstein-Zernike and structure factor
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Content of the Liquids part (lectures 1-6)

e Recap thermodynamics and phase diagrams

e Recap statistical mechanics and classical statistical mechanics
e Second virial coefficient and model liquids

e Structure of liquids and compressibility relation

e Ornstein-Zernike relation and link to (scattering) experiments

e Relation g(r) with interactions and thermodynamics and recap ———  Today, lecture (6)



Today’s lecture (6)

e Relation of g(r) with interactions and thermodynamics
— Potential of mean force
— Relation g(r) and ¢(r) at low densities
— Average potential energy

— Back to Van der Waals: internal energy

e Recap Liquids
— worked example problems
— Summary liquids

— From simple to complex fluids



Potential of mean force w(r)

/dTg /dTNe_BU(TT 735057 )

Related to probability that particle 1 is anywhere, any particle 2 at
distance r from particle 1, irrespective of N-2 other particles

w(r) = —kgT Ing(r)

Related to average force <f(r)> acting on particle 1, keeping 1 and 2
fixed (at distance r), irrespective of N-2 other particles

(f(r)) = =Viw(r)



Relation g(r) and pair potential ¢(r) (at small p)
w(r) = —kgT Ing(r)

Limit of l p=2>0

g(r) = o Bo(r)
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[problem set: correspondence g(r) and ¢(r) ]



Average potential energy and g(r)

(U =2wNp /OOO r2(r)g(r)dr

More intuitively:

N [° 5
vy =5 / o1r) - palrimrdr

Y J

average number of particles at
distance r from central particle




Internal energy Van der Waals

. 3 N?
Problem 4:internal energy: F, 4, = =NkgT — a——
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Internal energy Van der Waals
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Problem set: mean potential energy square-well

(U =2wNp /OOO r2¢(r)g(r)dr

square well potential: o(r)
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Three routes from g(r) to thermodynamics

a ©. @)
kT (—’0) =1+ 477,0/ (g(r) — 1)7“2d7“ (compressibility route)
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Today’s lecture (6)

e Relation of g(r) with interactions and thermodynamics
— Potential of mean force
— Relation g(r) and ¢(r) at low densities
— Average potential energy

— Back to Van der Waals: internal energy

e Recap Liquids
— worked example problems
— Summary liquids

— From simple to complex fluids



Problem 7 (old exam question)

The classical configuration integral is given by

ZN :/.../e_*BU(Tl""’TN)dTl...dTN,

where U(71, ..., 7n) is the total potential energy and g = 1/(kgT).

a) Explain what is meant by pair-wise additivity and give the corresponding expression for U in terms
of the pair potential between particles ¢ and j, ¢(ri;) = ¢i;.

b) Use your above expression for U in terms of ¢;; within the pair-wise additivity approximation
together with the definition of the Mayer f-function, f;; = e A% — 1, to show that Zy can be
written as

N
1>]

c) Explain the significance of the Mayer f-function in performing the integrals in Zy. Include in your
answer a sketch of a realistic/reasonable pair potential ¢;; and the corresponding Mayer f-function

fij-



Problem 12 (old exam question)

The compressibility equation is given by

1+ 47r,0/ h(r)r?dr = pkpTkr, Eq. 1
0
where p = 17 is the number density, h(r) = g(r) — 1 the total correlation function and kp = — - (%—‘;)T

the isothermal compressibility.

(a) Show that the isothermal compressibility can be rewritten as



Problem 12 (old exam question)

The second virial coefficient is given by
By (T) = —27r/ (6_5"5(7‘) — 1> r2dr, Eq. 2
0

where ¢(r) is the interaction pair potential as a function of the separation r and 5 =1/(kgT).

(b) In the limit of small p we can assume that the radial distribution function g(r) = exp(—o(r)3).
Use this to show that in the low density limit the compressibility equation can be written in terms
of By as

1— 2pB2 = kBT <%) .
op ) r

(c) Show that for small p this can be approximated as

dp
— =kgT (1+ 2pB o).
(8P)T B ( + 2p592 + )

and, hence, obtain an expression for the pressure. Comment on your answer.



Today’s lecture (6)

e Relation of g(r) with interactions and thermodynamics
— Potential of mean force
— Relation g(r) and ¢(r) at low densities
— Average potential energy

— Back to Van der Waals: internal energy

e Recap Liquids
— worked example problems
— Summary liquids

— From simple to complex fluids



From thermo and (classical) stat mech ...
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... to relations between:

for liquids (and imperfect gases)

e Thermodynamics:
e Structure:

¢ |[nteractions:

e Experiments:

p, Bo(T), kp, (U), E
g(r), h(r), S(K)
o(r), c(r)
S(K),g(r)




Today’s lecture (6)

e Relation of g(r) with interactions and thermodynamics
— Potential of mean force
— Relation g(r) and ¢(r) at low densities
— Average potential energy

— Back to Van der Waals: internal energy

e Recap Liquids
— worked example problems
— Summary liquids

— From simple to complex fluids



From simple to complex fluids*

Simple fluids Complex fluids

> T

e Complex interactions (dipoles, H-bonding, ...)

>T
e Multicomponent systems

e Simple one-component substance e Non-spherical substances: liquid crystals

e Small, quasi-spherical molecules e Macromolecular systems: polymers

e Multi-phase systems: colloidal suspensions

* Basic concepts for simple and complex liquids, Jean-Louis Barrat and Jean-Pierre Hansen, Cambridge University Press (2003)



A few examples of complex fluids work in the IMM

e Polymer solutions

multiphase coacervate droplets

Spruijt Lab

e Fmulsions
e Liquid crystals
e Surfactant solutions

e Colloidal fluids

e Biological fluids

‘ W|Ison Lab
Dullens Lab

Also other groups: HFML (Peter Christianen), IMM (Eeftens Lab, Huck Lab, Hansen Lab, Kouwer Lab, ...)



From simple liquids to colloids and soft matter

R. Evans, D. Frenkel, M. Dijkstra, Phys. Today 72, 38 (2019)

“Colloids provide a crucial link between simple liquids and complex fluids and soft matter.”



Colloids provide a crucial link between simple
liquids and complex fluids and soft matter

www.dullenslab.com



http://www.dullenslab.com/

Content of the Liquids part (lectures 1-6)

Recap thermodynamics and phase diagrams

Recap statistical mechanics and classical statistical mechanics
Second virial coefficient and model liquids

Structure of liquids and compressibility relation

Ornstein-Zernike relation and link to (scattering) experiments

N N N N N

Relation g(r) with interactions and thermodynamics and recap




