Fundamentals of Condensed Matter (lecture 6)

Summary lecture 5

Ornstein-Zernike equation

Fourier transform of Ornstein-Zernike

Structure factor (scattering)

Links Ornstein-Zernike and structure factor

$$S(K) = 1 + \rho \int [g(r) - 1] e^{i\vec{K}\cdot\vec{r}} d\vec{r} \qquad S(K \to 0) = 1 + \rho \int h(r) d\vec{r}$$
$$= 1 + \rho \hat{h}(K) \qquad \qquad = \rho k_B T \kappa_T$$
$$= \frac{1}{1 - \rho \hat{c}(K)} \qquad \qquad = k_B T \left(\frac{\partial \rho}{\partial p}\right)_T$$

$$h_{12} = c_{12} + \rho \int d\tau_3 c_{13} h_{32}$$

$$1 + \rho \hat{h}(K) = \frac{1}{1 - \rho \hat{c}(K)}$$

$$S(\vec{K}) = \frac{1}{N} \left\langle \sum_{i,j} e^{i\vec{K} \cdot (\vec{R}_i - \vec{R}_j)} \right\rangle$$

$$S(K \to 0) = 1 + \rho \int h(r)d\vec{r}$$
$$= \rho k_B T \kappa_T$$
$$= k_B T \left(\frac{\partial \rho}{\partial p}\right)_T$$

Content of the Liquids part (lectures 1-6)

- Recap thermodynamics and phase diagrams
- Recap statistical mechanics and classical statistical mechanics
- Second virial coefficient and model liquids
- Structure of liquids and compressibility relation
- Ornstein-Zernike relation and link to (scattering) experiments
- Relation g(r) with interactions and thermodynamics and recap Today, lecture (6)

Today's lecture (6)

- Relation of g(r) with interactions and thermodynamics
 - Potential of mean force
 - Relation g(r) and $\phi(r)$ at low densities
 - Average potential energy
 - Back to Van der Waals: internal energy
- Recap Liquids
 - worked example problems
 - Summary liquids
 - From simple to complex fluids

Potential of mean force w(r)

$$g(r) = \frac{V^2}{Z_N} \int_V d\tau_3 \cdots \int_V d\tau_N e^{-\beta U(\vec{r}, \vec{r}', \vec{r}_3, \dots, \vec{r}_N)}$$

Related to probability that particle 1 is anywhere, any particle 2 at distance *r* from particle 1, irrespective of *N-2* other particles

$$w(r) = -k_B T \ln g(r)$$

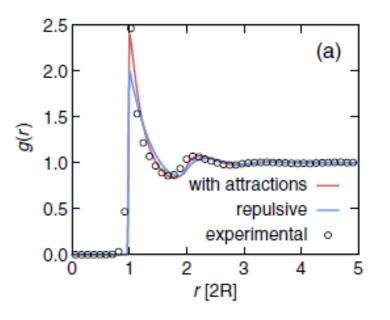
Related to average force $\langle f(r) \rangle$ acting on particle 1, keeping 1 and 2 fixed (at distance r), irrespective of N-2 other particles

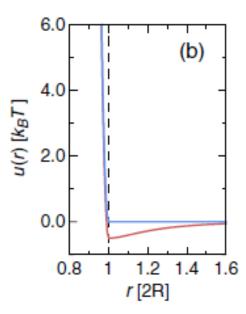
$$\langle f(r) \rangle = -\nabla_1 w(r)$$

Relation g(r) and pair potential $\phi(r)$ (at small ρ)

$$w(r) = -k_B T \ln g(r)$$

$$\lim_{\rho \to 0} \int_{-\beta \phi(r)} e^{-\beta \phi(r)}$$





[problem set: correspondence g(r) and $\phi(r)$]

Average potential energy and g(r)

$$\langle U \rangle = 2\pi N \rho \int_0^\infty r^2 \phi(r) g(r) dr$$

More intuitively:

$$\langle U \rangle = \frac{N}{2} \int_0^\infty \phi(r) \cdot \rho g(r) 4\pi r^2 dr$$

average number of particles at distance *r* from central particle

Internal energy Van der Waals

Problem 4: internal energy:
$$E_{vdw} = \frac{3}{2}Nk_BT - a\frac{N^2}{V}$$

$$E = E_{kin} + \langle U \rangle$$

$$E = \frac{3}{2}Nk_BT + kT^2 \left(\frac{\partial \ln Z_N}{\partial T}\right)_{N,V}$$

$$\langle U \rangle = 2\pi N\rho \int_0^\infty r^2 \phi(r)g(r)dr$$

Internal energy Van der Waals

Problem 4: internal energy:
$$E_{vdw} = \frac{3}{2}Nk_BT - a\frac{N^2}{V}$$

Problem 9: pair potential:
$$\phi(r) = \begin{cases} \infty & r < \sigma \\ -\frac{A}{r^6} & r \geq \sigma \end{cases} \qquad \phi(r) \ll k_B T \qquad \rightarrow \qquad \beta \phi(r) \ll 1$$

Problem 9: Van der Waals parameters:
$$\begin{cases} a=-2\pi\int_{\sigma}^{\infty}\phi(r)r^2dr\\ b=2\pi\int_{0}^{\sigma}r^2dr=\frac{2\pi\sigma^3}{3} \end{cases}$$

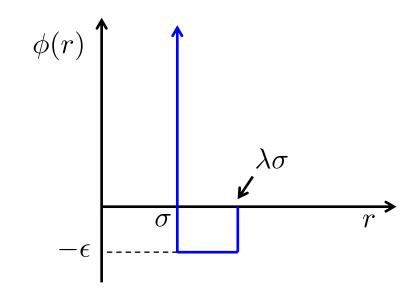
$$b = 2\pi \int_0^\sigma r^2 dr = \frac{2\pi\sigma^3}{3}$$

Problem set: mean potential energy square-well

$$\langle U \rangle = 2\pi N \rho \int_0^\infty r^2 \phi(r) g(r) dr$$

square well potential:

$$\phi(r) = \begin{cases} \infty & r < \sigma \\ -\epsilon & \sigma \le r \le \lambda \sigma \\ 0 & r > \lambda \sigma \end{cases}$$



Three routes from g(r) to thermodynamics

$$k_B T \left(\frac{\partial \rho}{\partial p}\right)_T = 1 + 4\pi \rho \int_0^\infty (g(r) - 1)r^2 dr \qquad \text{(compressibility route)}$$

$$E = \frac{3}{2}Nk_BT + 2\pi N\rho \int_0^\infty \phi(r)g(r)r^2dr$$
 (caloric route)

$$p = \rho k_B T - \frac{2\pi \rho^2}{3} \int_0^\infty \phi'(r) g(r) r^3 dr \qquad \text{(virial route*)}$$

* Not derived here
$$\left[\text{via } p = k_B T \left(\frac{\partial \ln Q}{\partial V} \right)_{N,T} = k_B T \left(\frac{\partial \ln Z_N}{\partial V} \right)_{N,T} \right]$$

Today's lecture (6)

- Relation of g(r) with interactions and thermodynamics
 - Potential of mean force
 - Relation g(r) and $\phi(r)$ at low densities
 - Average potential energy
 - Back to Van der Waals: internal energy

• Recap Liquids

- worked example problems
- Summary liquids
- From simple to complex fluids

Problem 7 (old exam question)

The classical configuration integral is given by

$$Z_N = \int \dots \int e^{-\beta U(\tau_1, \dots, \tau_N)} d\tau_1 \dots d\tau_N,$$

where $U(\tau_1,...,\tau_N)$ is the total potential energy and $\beta = 1/(k_BT)$.

- a) Explain what is meant by pair-wise additivity and give the corresponding expression for U in terms of the pair potential between particles i and j, $\phi(r_{ij}) = \phi_{ij}$.
- b) Use your above expression for U in terms of ϕ_{ij} within the pair-wise additivity approximation together with the definition of the Mayer f-function, $f_{ij} \equiv e^{-\beta\phi_{ij}} 1$, to show that Z_N can be written as

$$Z_N = \int \dots \int \prod_{i>j}^N (1 + f_{ij}) d\tau_1 \dots d\tau_N.$$

c) Explain the significance of the Mayer f-function in performing the integrals in Z_N . Include in your answer a sketch of a realistic/reasonable pair potential ϕ_{ij} and the corresponding Mayer f-function f_{ij} .

Problem 12 (old exam question)

The compressibility equation is given by

$$1 + 4\pi\rho \int_0^\infty h(r)r^2 dr = \rho k_B T \kappa_T,$$
 Eq. 1

where $\rho = \frac{N}{V}$ is the number density, $h(r) \equiv g(r) - 1$ the total correlation function and $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$ the isothermal compressibility.

(a) Show that the isothermal compressibility can be rewritten as

$$\kappa_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T.$$

Problem 12 (old exam question)

The second virial coefficient is given by

$$B_2(T) = -2\pi \int_0^\infty \left(e^{-\beta \phi(r)} - 1 \right) r^2 dr,$$
 Eq. 2

where $\phi(r)$ is the interaction pair potential as a function of the separation r and $\beta = 1/(k_B T)$.

(b) In the limit of small ρ we can assume that the radial distribution function $g(r) = \exp(-\phi(r)\beta)$. Use this to show that in the low density limit the compressibility equation can be written in terms of B_2 as

$$1 - 2\rho B_2 = k_B T \left(\frac{\partial \rho}{\partial p}\right)_T.$$

(c) Show that for small ρ this can be approximated as

$$\left(\frac{\partial p}{\partial \rho}\right)_T = k_B T \left(1 + 2\rho B_2 + \dots\right).$$

and, hence, obtain an expression for the pressure. Comment on your answer.

Today's lecture (6)

- Relation of g(r) with interactions and thermodynamics
 - Potential of mean force
 - Relation g(r) and $\phi(r)$ at low densities
 - Average potential energy
 - Back to Van der Waals: internal energy
- Recap Liquids
 - worked example problems
 - Summary liquids
 - From simple to complex fluids

From thermo and (classical) stat mech ...

$$p = k_B T \left(\rho + B_2 \rho^2 + B_3 \rho^3 + \dots \right)$$
$$p = \frac{nRT}{V - nb} - a \left(\frac{n}{V} \right)^2$$

 $dA = -SdT - pdV + \mu dn$

$$Q_{class} = \frac{1}{N!} \left(\frac{2\pi m k_B T}{h^2} \right)^{\frac{3N}{2}} Z_N$$

$$Z_N = \int \cdots \int e^{-\beta U(x_1, \dots, z_N)} d\tau_1 \cdots d\tau_N$$

$$A = -k_B T \ln Q$$

$$E = kT^2 \left(\frac{\partial \ln Q}{\partial T}\right)_{N,V}$$

$$p = k_B T \left(\frac{\partial \ln Q}{\partial V}\right)_{N,T}$$

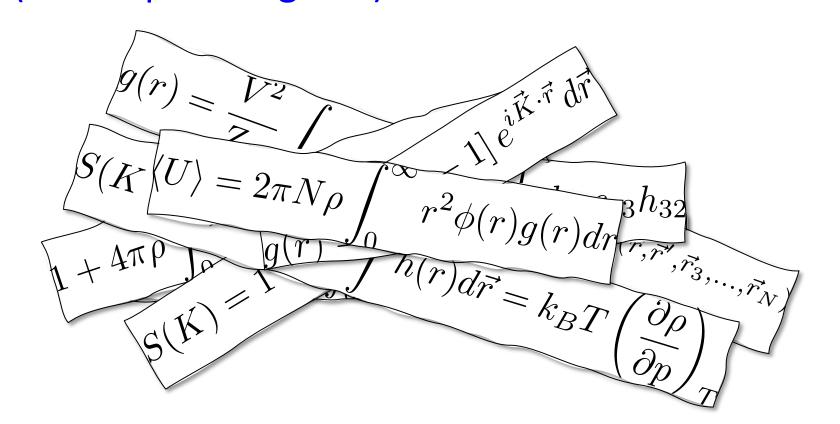
... to relations between:

• Thermodynamics: $p, B_2(T), \kappa_T, \langle U \rangle, E$

• Structure: g(r), h(r), S(K)

• Interactions: $\phi(r), c(r)$

for liquids (and imperfect gases) • Experiments: S(K), g(r)

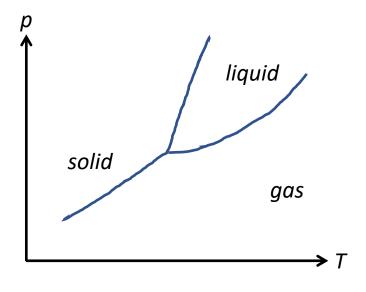


Today's lecture (6)

- Relation of g(r) with interactions and thermodynamics
 - Potential of mean force
 - Relation g(r) and $\phi(r)$ at low densities
 - Average potential energy
 - Back to Van der Waals: internal energy
- Recap Liquids
 - worked example problems
 - Summary liquids
 - From simple to complex fluids

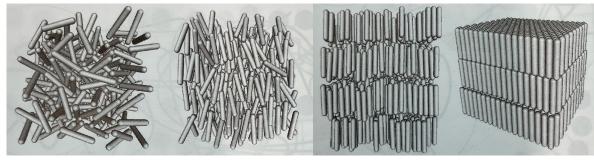
From simple to complex fluids*

Simple fluids



- Simple one-component substance
- Small, quasi-spherical molecules

Complex fluids



Thanks to Peter Bolhuis (now UvA)

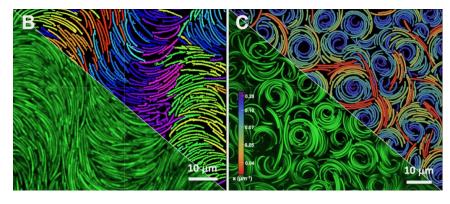
- Complex interactions (dipoles, H-bonding, ...)
- Multicomponent systems
- Non-spherical substances: liquid crystals
- Macromolecular systems: polymers
- Multi-phase systems: colloidal suspensions

^{*} Basic concepts for simple and complex liquids, Jean-Louis Barrat and Jean-Pierre Hansen, Cambridge University Press (2003)

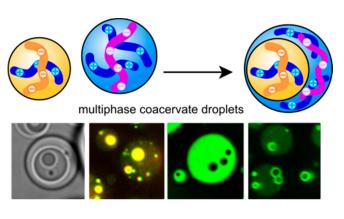
A few examples of complex fluids work in the IMM

- Polymer solutions
- Emulsions
- Liquid crystals
- Surfactant solutions
- Colloidal fluids
- Biological fluids
- ...

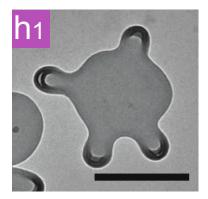
Peter Korevaar Lab



Dullens Lab



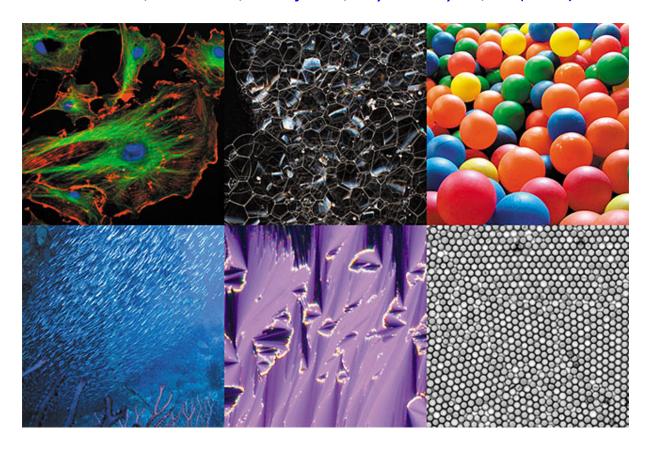
Spruijt Lab



Wilson Lab

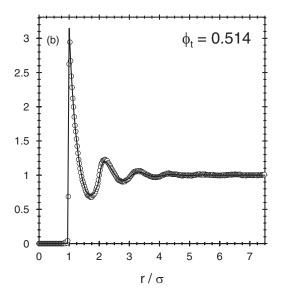
From simple liquids to colloids and soft matter

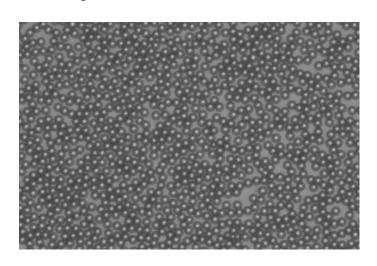
R. Evans, D. Frenkel, M. Dijkstra, Phys. Today 72, 38 (2019)

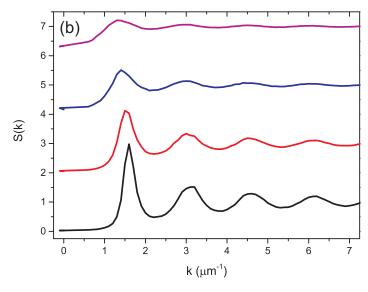


"Colloids provide a crucial link between simple liquids and complex fluids and soft matter."

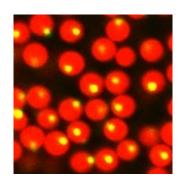
Colloids provide a crucial link between simple liquids and complex fluids and soft matter

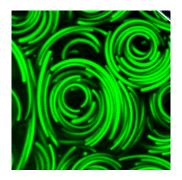


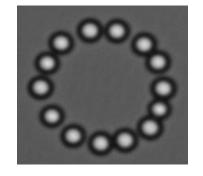


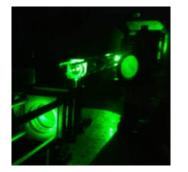


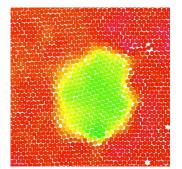
... we cook them, we look at them and tweez them ...











www.dullenslab.com

Content of the Liquids part (lectures 1-6)

- ✓ Recap thermodynamics and phase diagrams.
- ✓ Recap statistical mechanics and classical statistical mechanics
- ✓ Second virial coefficient and model liquids
- ✓ Structure of liquids and compressibility relation
- ✓ Ornstein-Zernike relation and link to (scattering) experiments
- ✓ Relation g(r) with interactions and thermodynamics and recap

