
Problem set 3 – Liquids

Problem 13

a) Show that magnitude of the scattering vector is given by K ⌘| ~K |= 4⇡
� sin

�
✓
2

�
using the figure

below.

b) Calculate the scattering angle corresponding to aK-value of 0.015 nm�1 for light scattering (� = 532
nm) and X-Ray scattering (� = 0.15 nm).

c) The scattered intensity is proportional to the form factor P (K) times the structure factor S(K),
i.e. I(K) / P (K)S(K). Briefly explain how the structure factor can be extracted from the total
scattered intensity in an experiment.

d) Sketch how the radial distribution functions and structure factors for a hard sphere system change
as the number density ⇢ is increased.

Problem 14

The Ornstein-Zernike equation can be written as

h12 = c12 + ⇢

Z
d⌧3c13h32.

a) Explain the meaning of each symbol, also taking into account the subscripts. Give physical inter-
pretations of h and c. What is meant by the term ’closure relation’?

b) Explain the basis for the Ornstein-Zernike equation in terms of direct and indirect interactions
using a sketch.

c) The Fourier transform of the Ornstein-Zernike equation reads

ĥ(K) = ĉ(K) + ⇢ĉ(K)ĥ(K).

Show that this can be rearranged to

1 + ⇢ĥ(K) =
1

1� ⇢ĉ(K)
,

and explain the experimental significance of the left-hand side of this equation.
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Problem 15

The compressibility equation is given by

1 + 4⇡⇢

Z 1

0
h(r)r2dr = ⇢kBTT , Eq. 1

where ⇢ = N
V is the number density, h(r) ⌘ g(r) � 1 the total correlation function and T = 1

⇢

⇣
@⇢
@P

⌘

T
the isothermal compressibility.

a) Sketch the total correlation function h(r) for a very dilute fluid of hard spheres. The hard spheres
have a diameter �.

b) The structure factor for an isotropic fluid is given by

S(K) = 1 + ⇢

Z
h(r)ei

~K·~rd~r.

Show that the isothermal compressibility T can be measured from a scattering experiment by
extrapolating the structure factor to K ! 0, in other words, show that S(K ! 0) = ⇢kBTT .

c) For isotropic systems the structure factor can also be written in spherical coordinates:

S(K) = 1 +
4⇡⇢

K

Z 1

0
h(r) sin(Kr)rdr.

Derive the following analytic expression for S(K) for a very dilute gas of hard spheres.

S(K) = 1 +
4⇡⇢

K2

✓
� cos(K�)� sin(K�)

K

◆
.

Hints: use your result from part a) and integration by parts.

d) Find the limit of S(K) as � ! 0, and then calculate the equation of state (the pressure) using the
result from part b), i.e. via the compressibility T . Comment on your answers.

Problem 16

In the dilute limit (⇢ ! 0), the radial distribution function g(r) is related to the pair potential �(r) via

g(r) = exp (���(r)) .

Sketch the pair potentials and corresponding radial distribution functions for the following systems at
low number density ⇢:

a) perfect gas,

b) hard sphere gas (diameter �),

c) attractive hard sphere gas (diameter �).
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Problem 17

The internal energy E is related to the canonical partition function Q via

E = kBT
2

✓
@ lnQ

@T

◆

N,V

, with Q =
1

N !

✓
2⇡mkBT

h2

◆ 3N
2

ZN .

Here ZN is the configuration integral ZN .

a) Use the above equations to show that

E =
3

2
NkBT + kT

2

✓
@ lnZN

@T

◆

N,V

(= Ekin + hUi).

b) From part a), we see that hUi = kT
2
�
@ lnZN

@T

�
N,V

. Combine this with ZN =
R
· · ·

R
e
��U(⌧1,...,⌧N )

d⌧1 · · · d⌧N
to show that

hUi =
R
d⌧1 · · ·

R
d⌧NUe

��U(... )

ZN
.

c) Next, using pairwise additivity, U =
P

i>j �ij , derive the following expression for the mean potential
energy in terms of the pair potential �(r) and the radial distribution function g(r):

hUi = 2⇡⇢N

Z 1

0
r
2
�(r)g(r)dr.

d) Finally, using that in the dilute limit g(r) = exp(���(r), calculate the average potential energy for
the square well potential,

�(r) =

8
><

>:

1 r < �,

�✏ �  r  ��,

0 r > ��.

Comment on the result you obtain for the case that � = 1.
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