Examination

Soft Matter
(NWI-MOL178)

Thursday, 16th January 2025, 12:45 — 15:45

Time allowed: three hours.
The exam consists of 4 questions
Please hand in your answers to each question on SEPARATE sheets.
Clearly write your name and student number on each sheet.
The marks in [ ] are only indicative of the weight given to each (sub)question.

A list of constants is included below.

List of constants

Elementary charge e 1.602 x 10719 C

Faraday’s constant F 9648 x 10* C mol~!
Boltzmann’s constant kg 1381 x107JK ! =862x10°eV K!
Planck’s constant h 6.626 x 10734 J s

Speed of light c 3.0x 108 ms~!

Atomic mass constant my  1.661 x 10727 kg

Avogadro’s constant Na  6.022 x 1022 mol~!

Gas constant R 8314J K ! mol™!

Gravitational acceleration g 9.807 m s~2

Unit of energy 1eV =1.602x1071 ]

Standard pressure p® 1 bar =1 x 10° Pa = 0.9869 atm

Unit of pressure 1 atm = 101.3 kPa




Question 1

Consider a spherical colloidal particle of radius R near a wall. The particle is made of material
1, the wall of material 2, and they are immersed in a medium 3. The van der Waals interaction
energy between the particle and the wall is given by
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where D is the surface-to-surface separation. See also the figure below.
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(b)
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Briefly explain the origin of the Van der Waals interaction and the meaning of Aj3a (a
derivation is not required). (4]

For a polystyrene particle and a glass wall immersed in water, A1z = 1.19-10720 J. Calculate
the Van der Waals interaction energy and the force acting on a sphere with a radius of
R =1 pum at a separation of D = 0.1R. Comment on the magnitude of U relatively to the
thermal energy at a temperature T' = 298 K. [4]

Now consider the situation that the colloidal particle and the wall are made of the same
material. Show that the Van der Waals interaction is always attractive in this case. Note

that A132 = A12 + A33 — A13 — A23 and Aij ~ W/AiiAjj' [4]

For a system of spherical colloidal particles of radius R dispersed in an aqueous electrolyte solution
the total (DLVO) interaction energy between two particles as a function of the surface-to-surface
distance D is given by
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Here, c the concentration of electrolyte, £~ ! the Debye length and B a constant.

(d)
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Sketch the total interaction energy as a function of D as well as the separate contributions
to U(D) due to the double layer and Van der Waals interactions. Explain why changing the
salt concentration may lead to aggregation of the particles. [4]

The critical aggregation concentration (cg) is defined by the distance at which both the
energy, U(D), and force, F(D), are zero. Show that at this concentration D = 1/k and
comment on this result. [4]



Question 2

Consider a solution containing colloidal particles and polymers that do not adsorb onto the colloids.
The polymers induce a depletion interaction between the colloids:

h
Faep(h) = 11V, (R), where Vov(h) = % (2R, — h)2 <3a + 2R, + 2) .

Here, II is the osmotic pressure of the polymer solution, V,, the overlap volume, a the particle
radius, R, the radius of the polymers, and h the surface-to-surface separation between the particles.

(a) Briefly explain the origin of the depletion interaction and the meaning of the overlap volume
Vov- 4]

(b) Calculate the maximum overlap volume and the range of the depletion interaction for a
colloid with @ = 500 nm and two polymer sizes: R, = 50 and 100 nm. Make a sketch of V,
as a function of h for these two polymer sizes in one plot. [5]

The size of a polymer depends on the quality of the solvent. The root mean squared end-to-end
distance of a polymer is described by Flory’s expression: 1/(R2?) = bN", where b is the Kuhn
length and N the number of Kuhn monomers. The exponent v = 0.5 for a polymer in a theta
solvent (ideal chain), and v = 0.6 for a polymer in a good solvent.

(¢) Derive Flory’s expression for a polymer in a good solvent from the balance between the
excluded volume interaction between monomers and the entropic stretching of the chain.
Note that the energy of the excluded volume interaction per monomer is Fi(R) = kgTh3n,
with n the number density of monomers in a polymer coil. The free energy required to

stretch a polymer chain to an end-to-end distance R is given by Fun(R) = kBTNR—;. [5]

At low polymer concentrations the osmotic pressure, I ~ ckgT Ny, is linearly proportional to the
polymer concentration ¢ (in mol/L). Above the overlap concentration, the osmotic pressure is no
longer proportional to the polymer concentration.

(d) Derive an expression for the overlap concentration of a polymer in a good solvent. Comment
on the meaning of the overlap concentration for the osmotic pressure. [3]

Two different types of non-adsorbing polymers of equal length N are added to two identical
solutions containing colloidal particles and salt. One polymer is in a good solvent, the other one
is in a theta solvent. The colloidal particles alone interact through a DLVO potential, and are
stable without polymer.

(e) The sample to which the polymer in a good solvent is added aggregates instantaneously, but
the other sample does not. Explain why this happens. [3]



Question 3
The (1D) motion of a colloidal particle in a solvent is described by the Langevin equation,

du(t)
dt

= F—&u(t) + f(1),

where m is the mass of the particle, v the instantaneous velocity, £ the (Stokes) friction factor, F'
the external force on the particle and f(¢) the fluctuating thermal force.

(a) Explain the origin of Brownian motion and why (f(t)) = 0. [3]
Consider the steady-state diffusion of spherical particles down a concentration gradient, dc/dx,

where ¢ = ¢(x). The force on a single particle is F' = —du(x)/dx, with the chemical potential
wu(z) = 4% + kpTlIn(c/c®). Here, u® and c¢® are constants.

(b) (i) Find an expression for F' and show that [4]
(v) = LI
- &e oda’
(ii) Combine the flux J = ¢(v) with Fick’s First Law, J = —D dc¢/dz, to show that the
diffusion coefficient D is given by, [1]
kgT
D=
£

Consider a suspension of colloidal spheres (radius R = 1 pm) in water (n = 0.89 - 1072 Pa s)
at a volume fraction ¢ and T' = 298 K. The friction factor is £ = 6mnR.

(c) The mean distance between the particles is approximately given by 7, ~ (v,/ ¢)1/ ® with
v, the particle volume. Given that the mean squared displacement in 3D is (r2(t)) = 6Dt,
show that the typical time 7, for a particle to diffuse the mean distance r,, is proportional
to ¢~2/3 and calculate 7,,, for a suspension with ¢ = 0.3. [4]

(d) Discuss whether for a particle in a suspension of volume fraction ¢, the diffusion coefficient,
D(¢), will be smaller, the same or larger compared to the diffusion coefficient for a single
particle, D, for times t < 7, and t > T,,. [4]

The position autocorrelation function for a Brownian particle in an harmonic optical trap is

(el (t)) = "2,

where 7 = £/k is the relaxation time of the particle in the trap and k the trap stiffness.

(¢) (i) Show that the mean squared displacement, defined as ([z(t') — z(t)]*), for a particle in
an harmonic optical trap is given by [2]

(lo(t) — (0)) = 22T (1= emaurr),

with At = |t/ — t| the lag time. Note that due to equipartition (x2) = kgT/k.

ii) Explain how Boltzmann’s constant may be determined from the mean squared displace-
ment of a particle in an optical trap of known stiffness k. [2]



Question 4
Wenzel’s law describes the wetting of liquids on rough solid substrates:
cos0* = rcosf.

(a) Explain the meaning of the different symbols, and explain why Wenzel’s law predicts that
roughness can make hydrophilic surfaces superhydrophilic and hydrophobic surfaces super-
hydrophobic. [4]

Wenzel’s law assumes that the liquid follows the roughness of the substrate, as shown below.
For very hydrophobic surfaces, however, this is not a good assumption. Instead, air becomes
trapped underneath the droplet and in between the texture on a surface. This state is called the
Cassie-Baxter state (see figure below).
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(b) The apparent contact angle of a droplet on a heterogeneous surface, containing substrates 1
and 2, can be approximated by cos 8* = aj cosf; 4+ ag cosfy. Use this expression to derive
Cassie-Baxter’s law for the apparent contact angle #* on a rough surface with air trapped
underneath the droplet: [5]

cos0* = —1+ ay (cosf + 1),
where ag denotes the fraction of solid surface underneath the droplet.

(¢) Compare the result of part (b) to Wenzel’s law. Is it possible to make superhydrophobic
surfaces with 8* = 180° according to Wenzel’s law and Cassie-Baxter’s law? Explain.  [3]

The Cassie-Baxter state of a droplet can be metastable if the distance between the pillars is large:
if a droplet is placed on top of these pillars very carefully, it remains suspended and air remains
trapped underneath the droplet, but if it is pushed, the liquid enters between the pillars and
touches the bottom surface, resulting in a Wenzel state. The resistance is caused by the Laplace

pressure, given by Ap = %Ci}%)se, with R the radius of curvature and ~y the surface tension.

(d) Explain why the Laplace pressure can resist a liquid from entering between the pillars. [3]

(e) Calculate the distance d between the pillars for which the droplet’s own weight is sufficient to
overcome this resistance. You may assume that the shape of a large droplet is approximately

a disk with height I, = , /%, with v = 72 mN/m, p = 1000 kg/m? the liquid mass density
and g the gravitational constant. The contact angle 6§ = 120°. [5]



